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ABSTRACT 

 

This report focuses on real time optimization of the Commuter Rail Circulator Route Network 

Design Problem (CRCNDP). The route configuration of the circulator system – where to stop 

and the route among the stops – is determined on a real-time basis by employing adaptive Tabu 

Search to timely solve a Mixed Integer Program (MIP) problem with an objective to minimize 

total cost incurred to both transit users and transit operators. Numerical experiments are executed 

to find the threshold for the minimum fraction of travelers that would need to report their 

destinations via smart phone to guarantee the practical value of optimization based on real-time 

collected demand against a base case defined as the average performance of all possible routes. 

The adaptive Tabu Search Algorithm is also applied to three real-size networks abstracted from 

the Martin Luther King (MLK) station of the new MetroRail system in Austin, Texas.
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EXECUTIVE SUMMARY 

 

Commuter rail systems, operating on unused or under-used railroad rights-of-way, are being 

introduced into many urban transportation systems.  Since locations of available rail rights-of-

way were typically chosen long ago to serve the needs of rail freight customers, these locations 

are not optimal for commuter rail users.  The majority of commuter rail users do not live or 

work within walking distance of potential commuter rail stations, so provision of quick, 

convenient access to and from stations is a critical part of overall commuter decisions to use 

commuter rail.   

Minimizing access time to rail stations and final destinations is crucial if commuter rail is 

to be a viable option for commuters. Well-designed feeder routes or circulator systems are 

regarded as potential solutions to provide train station to ultimate destination access. Transit 

planning for main line or feeder routes relies upon static demand estimates describing a typical 

day. Daily and peak-hour demands change in response to the state of the transport system, as 

influenced by weather, incidents, holiday schedules and many other factors.  

Recent marketing successes of “smart phones” might provide an innovative means of 

obtaining real time data that could be used to identify optimal paths and stop locations for 

commuter rail circulator systems.  Such advanced technology could allow commuter rail users 

to provide real-time final destination information that would enable real time optimization of 

feeder routes. 

This report focuses on real time optimization of the Commuter Rail Circulator Route 

Network Design Problem (CRCNDP). The route configuration of the circulator system – where 

to stop and the route among the stops – is determined on a real-time basis by employing adaptive 

Tabu Search to timely solve a Mixed Integer Program (MIP) problem with an objective to 

minimize total cost incurred to both transit users and transit operators. Numerical experiments 

are executed to find the threshold for the minimum fraction of travelers that would need to report 

their destinations via smart phone to guarantee the practical value of optimization based on real-

time collected demand against a base case defined as the average performance of all possible 

routes. The adaptive Tabu Search Algorithm is also applied to three real-size networks abstracted 

from the Martin Luther King (MLK) station of the new MetroRail system in Austin, Texas. 
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CHAPTER 1.  INTRODUCTION 

Population and employment growth are the two primary factors resulting in rush hour travel 

demand growth. The demographic and economic changes that have taken place over the past 50 

years are dramatic. The population has grown from 165 million in 1955 to 295 million in 2005 

while economic growth and employment growth have remained healthy and strong to meet the 

demand of the ever-increasing population. The population growth trend, according to U.S. 

Census projections, is anticipated to continue through 2055. By that time, more of the population 

will choose to live in the metropolitan areas due to the economic incentive in these areas and the 

lasting economic vitality will again promote employment growth. 

Traffic congestion due to travel demand exceeding the service capacity of urban 

transportation systems is a long-standing problem among all issues confronting transportation 

planners. According to the 2011 version of the annual Texas Transportation Institute Mobility 

Report (Schrank & Lomax, 2011) urban congestion (based on wasted time and fuel) is estimated 

to cost about $115 billion in the year 2011 alone. The bulk of transportation research mainly 

focuses on increasing highway capacity to alleviate congestion. Constraints in construction and 

maintenance budgets, the lack of available right-of-way and other political and environmental 

factors often cap the capacity of current highways. With the current demand for urban 

transportation far exceeding the service supply of existing highway systems, alternative means 

must be further explored to provide more reliable, accessible and efficient transportation 

systems.  

Commuter rail has been the subject of increasing interest within the United States in 

recent years, chiefly because it offers the potential for providing attractive, high-quality rapid 

transit service at a more reasonable cost when compared with other types of urban rail systems, 

such as light rail or heavy rail. Commuting trips, which account for a large fraction of peak-

period transport demand, are usually carried out daily during approximately the same peak hours 

and usually follow a fixed route with an aversion toward congestions. All the facts that justify 

commuter rail systems target commuting trips as an appropriate opportunity for an effective and 

practicable solution to ever-worsening congestion. 

STUDY MOTIVATION  

Commuter rail development and expansion programs are in progress at a number of locations in 

the United States currently. The Federal Transit Administration (FTA), the primary federal 

funding source for commuter rail projects, allocates investment through its New Starts program. 

According to FTA officials, FTA will not award full-funding grant agreements to commuter rail 

projects unless the commuter rail agency resolves relevant track access issues. Table 1 lists the 

current commuter rail projects in the New Starts Program Annual report for the fiscal year 2012 

(FTA, 2011) and indicates whether these new commuter rail systems are going to use existing 

track or construct new guideway. 
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Table 1.  Guideway for Commuter Rail Projects. 

 

New Starts Program on commuter rail (Annual 

Report for Fiscal Year 2012) 

Use existing track or construct new 

track 

1 
Wilmington to Newark Commuter Rail 

Improvements 
Construction of a third track 

2 Weber County to Salt Lake City Commuter Rail 

Operates within an existing railroad 

corridor parallel to Interstate 15 (I-

15), utilizes right-of-way previously 

acquired by UTA under a rail corridor 

preservation plan with certain 

facilities already in place 

3 Northeast Corridor 

This section of the Northeast Corridor 

is currently used only for Amtrak and 

freight operations 

4 Pawtucket/Central Falls Commuter Rail Station Facilities already in place 

5 Eagle Commuter Rail 
Construction of the east corridor and 

the Gold line 

6 
Central Florida Commuter Rail Transit - Initial 

Operating Segment 

Sharing track with existing freight and 

Amtrak services 

 

As indicated in the table, among the six new Commuter Rail projects in fiscal year 2012, 

only two of them propose to construct new track, and all the others are going to use existing 

track. Most of the reason is that Right-of-Way (ROW) for commuter rail – obtained either 

through leasing track from freight-rail operators or using abandoned track is cheap and easily 

accomplished. The use of existing rail ROW is a major factor in the evaluation of urban 

transportation options. This trend will continue as ROW continues to be difficult for transit 

operators to obtain. 

However, there are detriments to using existing track, especially those abandoned. Grava 

(2003) has discussed the issue of commuter rail placement: 

A basic issue related to the use of existing rail alignments is their placement. They were 

usually established more than 100 years ago to serve a completely different city 

configuration and respond to the needs of that time. They are not necessarily central to 

the current corridors of residential and commercial activity. 

 

Much of the rail infrastructure was developed to serve freight traffic to or from industrial 

centers. These industrial centers are generally associated with low-density land use. Also, freight 

rail lines usually cause noise and vibration. Citizens generally do not reside near these industrial 

centers because of the inconvenience and bad environment.  
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In another words, population densities of the places that the existing rail tracks intend to 

serve are fairly low.  In urban areas with high-density population, additional ROW is not 

generally available or usually too expensive to obtain to construct rail infrastructure.  

Minimizing access time to rail stations and final destinations is critical if commuter rail is 

to be a viable option for commuters. From the perspective of commuter rail operators, collector 

and distributor systems are a means to gather potential rail passengers spread out around the 

railroad to ameliorate the effect of low population density upon the commuter rail system, to 

maintain a reasonable loading ratio and thus system feasibility. From the perspective of 

commuter rail users, the circulator systems provide access to commuter rail since the majority of 

commuter rail users do not live or work within walking distance of existing rail or proposed rail 

stations. This represents a way to help cultivate and retain ridership in the short term until 

development near the rail stations can enhance the stability of the system and its ridership. 

The two ends of the commute trip have different characteristics. The home end of the trip 

can usually take advantage of available land in suburban regions when commuter rail is first 

introduced and access can be provided through the use of park and ride facilities. As these 

suburban regions mature, parking shortages can arise as continuing development in these regions 

consumes spare land.  At the work end of the trip, it is highly likely that a commuter will not 

have a personal vehicle at the destination station since he has already driven to the station at the 

home end, and as discussed previously, it is also unlikely that the commuter will work within 

walking distance of the destination station, as many station locations are not in the central 

business district. Additional modes providing access from stations at this end of trip are needed 

to insure commuter rail feasibility. 

This report will assume that park and ride facilities will provide access to the commuter 

rail line at the home end, and at the work end a circulator bus service is the only available mode. 

The method presented focuses on the destination end of the commute trip to an urban work 

location. Instead of solving the Commuter Rail Circulator Network Design Problem (CRCNDP) 

based upon static demand estimates describing a typical day, real-time daily and peak-hour 

demands in response to the state of the transport system, as influenced by weather, incidents, 

holiday schedules and many other factors are collected for route planning. A method that 

optimally designs the circulator network at the destination end of the commuter rail trip with 

real-time demand will be developed to better serve passengers at the work trip destination end. 

Note that having all rail passengers boarding the circulator bus is just one extreme scenario that 

the transit operator must deal with. Since the case study in this report is a circulator network 

design for the Martin Luther King (MLK) station of the commuter rail in Austin, TX, where 

there is no destination within a walk distance to the station, this assumption is fairly reasonable. 

Regarding cases where other station to destination travel modes are available, i.e. bus, taxi, smart 

car or walking, this CRCNDP method can still be widely applied since real-time destination 

information can still be obtained by simply asking passengers how and where they want to go, 

and the model can still be used to optimize a feeder system for passengers choosing to board the 

circulator. 
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STUDY OBJECTIVES 

The goal of this report is to develop a flexible algorithmic solution framework to implement real 

time computer-aided design of commuter rail circulator networks and provide various good 

solutions to accommodate real-time travel demand requirements. The proposed work in this 

report is intended to fulfill the following objectives: 

1. To identify knowledge that can reflect current related practice and existing rules of thumb 

for commuter rail circulator route network design issues; 

2. To develop a robust systematic efficient heuristic algorithm that can incorporate the 

above knowledge, and to test a set of designed algorithmic procedures to search 

intelligently for an optimal solution; 

3. To explicitly account for the multi-objective nature of the commuter rail circulator 

network design problem.  This includes exploring the capability to evaluate performance 

measures from the points of view of both the operator and transit users for service options 

and to develop the ability to ascertain the characteristics of tradeoffs between conflicting 

performance measure variables inherent in the commuter rail circulator network problem. 

EXPECTED CONTRIBUTIONS 

Due to the complexity and combinatorial NP-hard nature of the real-time Commuter Rail 

Circulator Network Design Problem (CRCNDP), traditional exact analytical optimization 

methodology is impracticable. The proposed work in this report is oriented to developing Meta-

heuristic approaches to finding an acceptable and operationally implementable route network 

that can provide alternative design concepts in a reasonable time domain. The solution 

methodology differs from existing approaches in many aspects and the expected contributions 

from this report are summarized as follows: 

1. Ability to apply a designed algorithmic procedures to search intelligently for an optimal 

solution without the loss of applicable service planning guidelines and the transit planners’ 

knowledge and expertise; 

2. Ability to produce a route network reflecting the inherent tradeoffs between conflicting 

performance-measures. This includes explicit consideration of the multi-objective nature 

of the commuter rail circulator network design problem and the capability to evaluate 

performance measures and service options from the points of view of both the operator 

and transit users; 

3. Ability to systematically apply heuristic algorithms to produce quality solutions for the 

CRCNDP and identify the most appropriate one(s) under certain circumstances; 

4. Ability to obtain optimal or near-optimal CRCNDP solutions within a strict time limit to 

realize real-time operation. 
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Report Overview 

In this chapter, the significance and motivation of working on the real-time optimization of the 

Commuter Rail Circulator Network Design Problem (CRCNDP) has been discussed, and study 

objective and expected contributions are also described. 

 Chapter 2 presents a review of the literature that is related to the CRCNDP problem. 

Since CRCNDP is identified as a sub-problem of transit route design problem, a significant 

amount of literature focusing on general transit network design problems to find out the route 

configuration and other operating strategies was reviewed. Model objective and decision 

variables were taken a close look, both analytical model and heuristic models engaged in solving 

these problems are discussed. Three meta-heuristics methods and their related literature are 

reviewed in detail as implications for this report. 

 Chapter 3 provides a detailed explanation of the model formulation for the real-time 

CRCNDP. A mathematical nonlinear mixed integer programming model is formulated. 

Constraint sets, decision variables and objective functions are presented. 

 Chapter 4 presents the solution framework based on adaptive Tabu Search algorithm. The 

adaptive Tabu Search algorithm is composed of neighborhood definition, initial solution 

construction and evaluation and updating procedures. And results based on this methodology on 

two sample cases are also shown in this chapter. 

 Chapter 5 shows the numerical testing results based on Monte Carlo technique to find the 

threshold across which more destination data given by additional passengers would make no 

significant improvement to the optimal solution obtained by the meta-heuristic method. A 

methodology is also proposed for this purpose. 

 Chapter 6 presents the results on three real size cases abstracted from the Martin Luther 

King (MLK) station of the new MetroRail system in Austin, Texas. Solution performance and 

computational time are all discussed. 

 Chapter 7 concludes with summaries of the developed algorithm and research results. 

Suggestions for future research are also provided. 
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CHAPTER 2.  LITERATURE REVIEW 

Generally speaking, technical literature on the bus transit route network design problem involves 

finding a bus transit route network configuration and other associated operational decisions that 

achieve a desired objective with a variety of constraints. Depending on the problem characteristic 

and modeler’s perspective, objective and decision variables can be defined in various ways.  

MODEL OBJECTIVES AND DECISION VARIABLES 

Kuah and Perl (1988) considered both users’ travel cost and transit agency’s operation cost while 

formulating a feeder bus network design problem to design a feeder bus to access rail system. It 

assumes an M-to-1 demand pattern where transit users would start from different bus stops, 

transfer at a rail station and then get to a final common rail station that is located in a downtown 

area. Since the demand starting from each stop is fixed, total access time to the bus stop is 

constant and cannot be affected by the network configuration, user travel cost in the model 

formulation includes user waiting cost at both bus stops and rail stations and user riding costs 

along the bus route and rail line; while the transit agency’s operation cost is composed of capital 

cost and variable cost that is related to vehicle running time. Considering both user travel cost 

and transit operator cost also turns out to be a widely used way to achieve the optimal balance 

between demand and supply in the transit network design problem. 

Dubois, Bel, and Llibre (1979) believe that to simply minimize the total travel time is 

appropriate while modifying a transportation network to better serve its existing demand. Instead 

of including operation cost in the objective function, they actually consider a particular budget as 

a cost constraint for the existing route modification. Ceder and Israeli (1998) provide a 

methodology with no preference on the specification of network structure, and account for the 

operators’ benefit.  This approach is of interest since it is different from most other works. The 

objective function in the model includes the empty space hours of vehicles to represent 

unproductivity from the transit operator side. Lee and Vuchic (2005) provide a detailed 

discussion of the composition of their conceptual objective function. They mentioned that 

minimization of user travel cost is a proper objective for public transit agencies, however, for 

private transit agencies, profit maximization would be more appropriate. The combination of the 

two objectives, which represents the social benefit maximization or the social cost minimization, 

tends to be favored by transit planners. The authors believe that if the operators’ constraint is 

satisfied, user travel time minimization is desirable in many public ownership situations. 

Therefore, user travel time minimization is used as the optimization criterion for simplicity.  

Ceder and Wilson (1986) actually provide a description for the bus network design 

problem and discuss the whole bus planning process as a sequential and systematic decision 

process which consists of five levels of decisions: network route design, frequency setting, 

timetable development, followed by bus scheduling and driver scheduling. It is mentioned that 

early efforts were devoted to bus and driver scheduling since the largest single cost to transit 

agencies of providing service is the driver wages and benefits, and optimization over these two 
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scheduling problems would seem to be the best way to reduce this cost.  Considering the entire 

planning process, the design of bus routes and defining operating frequencies generally receives 

the largest amount of attention. The author also mentioned: “If one could consider the full 

problem domain including alternative bus networks, it is more likely that sub-optimality in the 

final solution will be introduced by non-systematic rejection (through non-consideration) of 

feasible networks than through sub-optimality at the stages of bus and driver scheduling, which 

have already been extensively researched.” Later research work is more dedicated to transit route 

set and frequency definitions.  Pattnaik, Mohan and Tom (1998) focus on a problem of urban 

bus route network design to determine a transit route set and its associated operating frequencies.  

Route configuration and operation frequency on each route are the two primary sets of decisions 

that entail the largest amount of work on typical transit design problems. Chakroborty (2003) 

decomposes the urban transit network design problem into two sub-problems: the Transit 

Routing Problem (TrRB) and the Transit Scheduling Problem (TrSP). As the TrRB aims to select 

a set of routes, the TrSP substitutes a frequency optimization procedure for the process of 

thorough schedule analysis based upon bus arrivals and departures at all stops of the network. 

Solutions obtained based on this model formulation can actually provide more user-friendly 

transit information – a timetable for buses on each route. And also this formulation can be 

modified to incorporate the transfer concept without significant effort.  

ANALYTICAL MODELS 

Classical analytical optimization models were used in the early stages of the research on the 

transit route network design problem. These models focus on developing a continuous convex 

objective function under assumptions that simplify and idealize the transit network. By solving 

first-order equations of the objective functions in these models, optimal solutions for stop 

spacing, headway, frequency, or other route characteristics can be efficiently solved. As noted by 

Ceder and Wilson (1986), analytic methods are suited to early stage screening in the planning 

process or conceptual policy decisions where approximate design parameters are adequate but 

have little practical benefit in solving real world problems. Examples of this traditional 

operations research analytical optimization model can be seen in the work of Newell (1979), 

Kuah and Perl (1988) and Chien and Schonfeld (1998). 

Newell (1979) discussed issues relating to the optimal design of bus routes. One oft-cited 

viewpoint from this work is the characteristic that distinguishes the bus transit assignment 

process from that of the automobile assignment process, which is the higher the demand for trips 

on a route, the better the level of service that can be provided due to higher frequencies and less 

wait and transfer time.  Newell mainly illustrated the sensitivity of any optimal geometry to the 

nature of the trip distribution and showed that a square grid of straight-line bus routes does not 

provide an optimal geometry even under highly idealized conditions where trips are uniformly 

distributed. And the author stated that potential good geometries should assign routes onto a 

single main street and past a common junction.  
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Kuah and Perl (1988) specially address the problem of designing an optimal feeder bus 

network to access a rail line with a differentiation-based method. The analytical model solves for 

the three basic variables – the route spacing, operating headway and stop spacing. For the first 

two decision variables, results showed that they are not highly sensitive to changes in the 

relevant system parameters. With regard to the stop spacing, three cases are considered: uniform 

spacing; constant spacing along routes; and variable spacing. In the first two cases, the optimal 

stop spacing is shown to be related to some system parameter, increase with walking speed, 

value of riding time and average time lost at a bus stop, and decrease with the value of walk 

time. In the third case, the optimal stop spacing depends on initial conditions, and stop spacing is 

shown to increase as the distance from the rail line decreases. Besides many of the same 

restrictive assumptions about the network layout to make the problem solvable with analytical 

methods, the authors indicate that the assumption of fixed demand for the feeder bus system is 

applicable when the demand is affected primarily by the level of service and the resulting 

ridership of the rail service.  

Chien and Schonfeld (1998) develop a model to jointly optimize both a rail transit line 

and a dedicated feeder bus system to serve the rail line. The optimization method solves for rail 

line length, rail station spacing, bus headway, bus stop spacing, and bus route spacing. With the 

corridor demand characteristics specified with irregular discrete distributions to realistically 

represent geographic variations, the total cost of the bus and rail network is minimized with their 

proposed iterative method – a combination of basic calculus and a successive substitution 

method. The basic idea of the classical optimization algorithm is to derive, for each decision 

variable, the gradient vector by setting the first derivative of the objective function with respect 

to each decision variable equal to zero. However, their method allows changes in all decision 

variables within one iteration by successive substitution of decision variable values to efficiently 

solve for all the variables. The numerical results show that the most significant factor in 

determining the rail line length is the demand. The total cost function is relatively flat near the 

optimum, and its practical application is that minor changes in the optimal solution would allow 

transit suppliers flexibility in fitting the route structure to local circumstances without significant 

deterioration of total cost.  

HEURISTIC MODELS 

Chakroborty (2003) has provided a detailed discussion regarding why the urban transit network 

design problem (UTNDP) cannot be solved with exact algorithms such as Branch-and-Bound, or 

Branch-and-Cut. First, inclusion of discrete decision variables in the UTNDP increases 

computational complexity since existing methodologies, for instance, the branch and bound 

technique, deal with integer variables iteratively by generating artificial constraints. Secondly, 

the nonlinearity of the UTNDP also makes it hard to solve. Traditional methods would solve this 

kind of problem through successive linearization, and this again would add a series of additional 

variables and involve significant computational effort.  Thirdly, as also mentioned by Baaj and 

Mahmassani (1990) defining logical conditions to better describe a realistic transit network in the 
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mathematical program will again introduce more integer variables and further computational 

complexity. All these listed facts lead to a common problem – a significant computational 

burden. 

Given the limitation of exact algorithms in solving realistic transit network design 

problems, approximation techniques – heuristics and meta-heuristics are usually preferred in 

many practical situations. They enable one to solve the real-size network design problem in a 

reasonable time frame, compared to exact algorithms. However, the problems related to 

approximation methods are that the solution obtained is not guaranteed to be the global optimal, 

that it is difficult to state bounds on solution quality, and that the solution quality would be 

different every time the algorithm runs. Heuristic algorithms are usually guided by modelers’ 

experience without specific rules to follow. The problems are solved by heuristic methods simply 

according to common sense. Meta-heuristics, as a subset of heuristics, are general algorithm 

frameworks, and they try to mimic biological, physical or natural phenomena in the real world to 

intelligently perform local searches. As they work well on combinatorial problems in which an 

optimal solution is sought over a discrete solution space, they are also employed in transit 

network design problems. 

Heuristics 

For solving a realistic size transit network design problem, heuristic methods rather than 

traditional exact optimization methods are usually used. Motivated by the practical problem of 

scheduling dial-a-ride transportation systems, Stein (1978) presents a heuristic method to solve a 

many-to-many route design problem. For the single-bus problem, the algorithm first partitions 

the service area into many smaller sub-regions, finding optimal tours for these regions and then 

connecting these tours to other regions. And for the multiple-bus problem, the algorithm includes 

predefined transfer points and allows buses to meet at these points for transfer until all origin-

destination pairs can be covered by the resulting route sets. 

Dubois, Bel, and Llibre (1979) deal with the problem of modifying a transportation 

network to better serve its existing demand. They decompose the problem into three sub-

problems: choosing an optimal subset of streets (the optimal network problem), selecting bus 

lines, and then defining optimal service frequencies for the bus lines. The candidate street set and 

bus line set are both developed with greedy heuristic procedures.  Three greedy heuristics are 

proposed for finding the street links, two of them finding the set by removing links step by step 

to reduce the total travel time and the other by adding links to minimize the travel time. The bus 

lines are chosen first by adding lines to connect the whole network, then searching for the main 

connection nodes and adding lines to decrease the number of these nodes to eliminate indirect 

trips, and finally joining lines or suppressing unused bus segments.  The optimal service 

frequencies for the bus lines are determined through an evaluation and optimization process. 

Starting from a given set of bus lines and frequencies, performance of the bus network is 

evaluated and various characteristics become index components, and based on the index value, 
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new frequencies are sought through a gradient-search routine in the optimization procedure, then 

the new network will be evaluated and optimized again until the frequencies converge. 

Kuah and Perl (1988) define the feeder bus network design problem to provide feeder bus 

service to access an existing rail system. The problem solution method aims to find the optimal 

route set and operating frequency for the feeder bus system. A mathematical programming model 

for an M-to-1 demand pattern is formulated and also generalized to the M-to-M pattern. A 

heuristic method is presented to first initialize a feasible set of routes and then using a local 

search algorithm, it seeks to obtain better solutions.  

The initialization procedure generalizes the “sequential savings approach’ to consider 

frequency. For each bus stop, the initial procedure first calculates the direct route costs to all rail 

stations, and then finds the route link to the rail station with the minimum direct route cost, and 

both the route link and its associated minimum cost are recorded as the direct route cost for each 

bus stop. After that, the initial procedure starts to build the network by choosing from all bus 

stops the one that has the largest direct route cost. And this stop will be used as the starting stop 

of the first bus route and following stops will be placed between that stop and the train station 

where the direct route ends. Nodes are sequentially inserted based on the savings due to inclusion 

in the current emerging route. When predefined conditions occur, either constrains are violated 

or savings caused by the inclusion of an additional node is below a set value, building of this 

route will be terminated and a new route construction procedure will be initiated and follow the 

same insertion process. The initialization will be terminated when all origin-destination demand 

pairs are served by a feasible route. 

After a feasible set of routes was constructed during initialization, an improvement 

procedure – a local search will be employed to correct the limitations of the initial algorithm.  

The single route exchange procedure optimizes the order of bus stops in a single route to reduce 

total route cost. And the displacement will position a bus node to a different route if that action 

can reduce the total route cost. Although the local search procedure was not guided by any 

systematic mechanism and was highly problem-specific, it was a successful early effort to 

provide an heuristic that would provide solutions that were superior to manually designed 

networks. 

Meta-heuristics 

Genetic Algorithm 

The Genetic Algorithm, inspired by the process of biological evolution, natural selection and 

survival of the fittest in living organisms, works on a population of individuals representing 

solutions to a given problem. Each individual is represented by a string of bits called 

chromosomes or genes, and each chromosome reflects the solution attributes. A fitness value is 

assigned to each individual in order to evaluate its optimality analogous to organisms’ 

adaptability to the environment. Individuals with higher fitness values have higher chances to be 

selected for reproduction. Their offspring would inherit their characteristic.  Hence, favorable 
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characteristic would be able to spread throughout the population over generations and the most 

promising areas of the search space are explored. Finally, the population should converge to an 

optimal or near-optimal solution, which should be output as the search result. 

Pattnaik, Mohan and Tom (1998) use a Genetic Algorithm to solve the urban transit route 

network design problem. In their characterization of the problem both the route configuration for 

a transit system and associated frequencies are determined to achieve the desired objectives. The 

problem is solved in two phases:  First, a set of routes for every terminal node pair were 

generated and ranked based on performance (associated travel time) as the candidate route set 

competing for optimal routes. Second, the optimal set was selected using an application of the 

Genetic Algorithm (GA). With a coding-decoding scheme set up, the route index can be 

converted to strings of bits, which are manipulated by GA for population initialization and 

generation production. The GA was adopted by using the fixed string length coding scheme, and 

a new variable string length coding was also proposed. With the fixed string length coding 

scheme, the number of routes in a route set is assumed within a range. The number of routes in a 

feasible solution is fixed during the successive generation. And the evaluation is carried out by 

varying the size of the route set over a range to find the optimal set. The problem with this 

method is that the user does not know how many routes would eventually evolve in an optimal 

solution. The proposed variable string length coding scheme can solve this problem by allowing 

different numbers of routes to be included in the set to be evaluated in the same generation. It 

added the insertion and deletion operators to the reproduction process (usually composed of 

mutation and crossover operator) in the fixed string length scheme so that by producing 

successive generations the solution route set size and the set of routes can be found 

simultaneously. Tom and Mohan (2003) applied the variable string length coding scheme in the 

Genetic Algorithm to a medium-sized network with 75 nodes and 125 links and also proposed a 

coding scheme to incorporate frequencies into the string representation in GA, in which case, 

both route configuration and bus operating frequencies can be determined simultaneously. 

Simulated Annealing  

Simulated Annealing simulates the physical phenomena of the annealing process for solids. The 

initial temperature and the rate at which the temperature reduces are called the annealing 

schedule. It is a hill-climbing algorithm with additional ability to escape from local optima in the 

search space. Using SA to solve problems, a feasible initial solution is constructed first. A 

neighborhood of this solution is identified based on predefined neighborhood search techniques, 

and the associated objective function value of this new solution is calculated.  If the new 

solution is better than the current solution in terms of improving the objective function value, the 

new solution is accepted.  If the new solution is not better than the current solution, the new 

solution is accepted with a certain probability           , where   is a chosen unfavorable 

change amount in the objective function value from the old to the new solution and   is the 

current temperature. The probability decreases exponentially with the badness of the move. The 

annealing temperature is first set to be high so that the probability of acceptance will also be 



 13 

high, and at the beginning of the search almost all new solutions are accepted. As the 

temperature gradually decreases, the probability of acceptance of low quality solutions will 

become very small.  In this algorithm framework, high temperatures allow a better exploration 

of the search space, while lower temperatures allow a fine-tuning of a good solution. And the 

whole procedure is less likely to get stuck in a local optimum since bad moves still have a chance 

of being accepted. 

Fan and Machemehl (2006) use a Simulated Annealing algorithm to solve the transit 

route network design problem. The proposed solution framework is composed of three major 

steps: An initial candidate route set generation procedure; a network analysis procedure that 

assigns transit trips to each route and determines service frequencies; and a simulated annealing 

procedure to perform a search and select an optimal set of routes from the search space. The 

candidate routes set is generated using Dijkstra’s shortest path algorithm and Yen’s K-shortest 

path algorithm to find the shortest path between centroid node pairs. All the candidate routes are 

subject to the user defined minimum and maximum length constraints. They are indexed and 

stored in the solution space. At the beginning of SA implementation, the initial route set was 

randomly selected. With the network analysis procedure, transit trips were assigned to each 

route, operating frequency was determined in iterative steps and the performance measurement 

of this solution is also computed and stored. The annealing schedule consists of four 

components: (1) the initial value of temperature T; (2) a cooling function            

  ; (3) the number of iterations performed at each temperature; and (4) the stop criteria to 

terminate the algorithm. The neighborhood defined in this problem is that for any route  , 

replacing it with the route right next to it in the solution space produces a new neighborhood 

solution. Starting from the random initial solution, SA guides the search procedure and updates 

the current best solution until the number of iterations or termination criteria are satisfied. To 

measure the solution quality of the SA algorithm, the authors also use genetic algorithm as a 

benchmark. They test three experimental networks and state that the proposed SA algorithm 

outperforms the GA algorithm in most cases and that compared to GA, the SA is at least as good 

as GA as a candidate solution approach for the BTRNDP. 

Tabu Search 

The Tabu Search technique proposed by Glover (1977) is also widely used for solving 

combinatorial optimization problems.  Its name is derived from the word ‘Taboo’ meaning 

forbidden or restricted.  Tabu Search, like simulated annealing, allows for exploring the search 

space smartly to escape local optima. The major distinguishing feature of Tabu Search is the use 

of a short-term memory called a tabu list, in which reverse moves of recently taken moves are 

controlled.  Moves in the list are considered as prohibited by the Search and cannot be visited 

again for a predefined number of iterations. The idea is to avoid the problem of cycling since the 

search many be trapped within a certain neighborhood region, oscillating among solutions that 

have been previously visited. By prohibiting recently visited moves, the algorithm is guided to 

explore new regions of the search space in an attempt to escape the trap of local optima. 
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Extended from the heuristics proposed by Kuah and Perl (1988), Martins and Pato (1998) 

first expand the initial solution construction procedure by adding a two-phase construction 

method to the original sequential savings approach. And mostly, they employed Tabu restrictions 

in the improvement procedure. For both the single route exchange procedure and the internal and 

external displacement procedures, Tabu restrictions prevent the replacement of a stop in its 

previous position for a chosen number of iterations. Also, the intensification strategy of the Tabu 

Search method accentuates the search in a region of good solutions by decreasing the tenure of 

moves marked tabu, diversification strategies are attempted by increasing the costs of the more 

frequently moved stops to take more consideration over them when initializing routes. This helps 

to obtain solutions that are different from the previously visited ones. 

Fan and Machemehl (2008) applied the Tabu Search algorithm for the design of public 

transportation networks. The solution search framework includes: an initial candidate route set 

generation procedure; a network analysis procedure to assign transit trips and determine service 

frequencies; and a Tabu Search heuristic method to guide the local search process and select an 

optimal route set from the huge solution space. All feasible candidate routes connecting terminal 

node pairs are indexed and stored in the solution space. Starting from an initial feasible route set, 

the Tabu Search algorithm defines neighborhood solutions of the current solution as those 

obtained by replacing any route in the current solution by its adjacent routes stored in the 

solution space and outside the current set. Moves that have been taken are marked as Tabu for a 

user-defined or randomly generated number of iterations. The authors also include diversification 

and intensification strategies in the search process. The diversification strategy allows more 

routes to be replaced by remotely located routes so that the solution space can be traversed and 

explored more evenly. And to respect the nature of Tabu Search, the intensification strategy 

allows the diversification strategy to be used only once during a given operation. By conducting 

sensitivity analysis over three experimental examples, the results show that the Tabu Search with 

Shakeup and fixed tenure is the best TS algorithm application for solving the bus transit route 

network design problem. 

Lownes and Machemehl (2010) specifically address the CRCNDP problem by 

formulating a mixed integer programming approach with the objective accounting for transit user 

travel cost, transit agency operation cost and social cost related to unserved demand.  Both 

exact and heuristic methods are proposed to solve the problem. The exact method utilizes lower 

bound and additional stopping criterion to reduce computational effort, yet it is still suitable to 

small to medium-sized networks while the Tabu Search method solves large networks in a 

reasonable time domain. The real-time CRCNDP in this report is closely related to Lownes’ 

work, but differentiates itself in two aspects: 1. As mentioned in the introduction chapter, this 

report proposes a scenario in which all passengers alighting the train have no other mode choice 

except the circulator provided, so that for any un-served destination node, a penalty for resulting 

long walk trips is added to the objective function rather than categorizing the demand as un-

served; 2. Since this effort aims to provide optimal route configuration to each set of arriving 

train passengers, it requires that the optimal or near-optimal solution be obtained in a limited 
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time domain. That is to say, high computational speed is a primary goal in developing the 

algorithm that is intended to provide virtually real-time route optimization solutions. 

SUMMARY 

This chapter has summarized related literature of transit network design problems based upon 

their objective function, decision variables and solution framework. A combination of both user 

travel cost and operators’ operation cost is a common practice in defining the objective function. 

It is also a proper objective in the real-time CRCNDP since other factors, such as capital 

investment and the impact on demand are both remotely related to and hard to control in the real-

time operation. Regarding the decision variables, since a seamless transfer concept is 

incorporated, that is, all rail passengers use the bus service, only route configurations remain for 

optimization. Two major sets of methodology for solving the route design problem are identified 

and the meta-heuristics are chosen for real-time operation due to the inherent NP-hard nature of 

the transit network design problem, as well as the quick response requirements of the real-time 

CRCNDP.  The next chapter will provide a detailed explanation of the model formulation for 

the real-time CRCNDP.  
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CHAPTER 3.  MODEL FORMULATION 

The real-time CRCNDP aims to provide an optimal route for each set of passengers arriving at a 

commuter rail station on a real time basis.  Selection of bus stops and the route connecting them 

are determined simultaneously to design a current feeder system network.  Instead of having a 

static O-D demand for commuters describing a typical day, a real-time O-D demand would be 

obtained from passengers on each and every train.  In the best case, if all passenger destinations 

are known, every circulator bus could traverse a uniquely optimized route stopping only at 

uniquely selected optimally located locations.  However, depending on the success of the 

method chosen to gather passenger destination information, less then 100 percent of the 

passenger destinations would be known.  This reality introduces the question of what fraction of 

passenger destinations must be known to justify route and stop optimization based upon the 

partial destination information.  Since partial knowledge of the destination set is likely to be the 

typical case, this question is not trivial.  Therefore, it is experimentally addressed in later 

sections   

The total commuter rail demand alighting at the station is assumed to be totally served by 

the circulator system. This assumption is applicable to those newly built and remotely located 

rail system stations where neither public transit modes nor walk can be a viable option for 

accessing the rail station. With a rail system in place, land use policy could allow Transit 

Oriented development around rail stations over a long time period. In that case, passengers 

alighting the rail stations might have other travel options (walk, bus, light rail and so on) to get to 

their destinations. But there is no negative effect on this model since real-time destination 

information can still be obtained by simply asking passengers how and where they want to go, 

and the model can still be used to optimize a feeder system for passengers choosing to board the 

circulator without loss of generality. Since the optimization process may not include every 

possible destination node in the optimal stop set, long walk penalties are applied to the objective 

function accordingly. The model will also incorporate the seamless transfer concept, which is a 

bus for each circulator route should be present at the rail station when a commuter train arrives at 

the station.  

The CRCNDP can be formulated in various ways. Every modeler confronts the decision 

regarding tradeoffs between modeling precision and computational cost. For a real time 

optimization algorithm, a model formulation which enables obtaining an optimal or near-optimal 

solution within a very limited time constraint (in this problem, from the time passengers board 

the commuter rail train to the time they get to the station served by the circulator) becomes quite 

necessary. Following is the formulation of the CRCNDP in this report based upon the work of 

Lownes (2007). 

FORMULATION 

The formulation of the CRCNDP uses an idealized, simplified network representation similar to 

that shown in Figure 1. A rail station shown as the Green node is associated with a number of 
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demand centroids located at the center of each zone. Around each demand centroid, candidate 

bus stops are represented by the red nodes at the mid-block and intersection locations. There are 

various methods to select potential stop locations and inclusion of both mid-block and 

intersection stops makes the network representation more comprehensive, however, the more 

locations included in the network, the greater complexity of computational effort would arise in 

each evaluation process. Therefore, decisions have to be made upon stop location selections 

when dealing with realistic problems. Different from most of the previous work, the route 

configuration in this report is not based upon zonal demands and it actually incorporates the 

exact location of bus stops. Then the optimal route configuration obtained based on this network 

representation would be used to identify a path that connects the actual bus stops rather than 

“schematically” connecting the demand zones and leaving actual stop location choices to the 

judgment of the analyst.  This enables the algorithm developed in this report to provide the 

level of information that transit operators really want in practice. The algorithm will permit the 

user to specify potential stops at mid-block and intersection locations. However, as the number 

of potential stops increases the speed with which the algorithm can find the solution decreases. In 

other words, the user is not limited to a certain number or a characterization of stops that is built 

into the algorithm. If a user requires quicker response times, this could be obtained most easily 

by reducing the number of candidate stops.  

 

Figure 1. Network Representation (Lownes (2007)). 
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Before a detailed description of the formulation components is given, to avoid ambiguity, 

several assumptions are described.  

ASSUMPTIONS 

1. There is no traffic congestion and no incidents along any circulator route and circulator 

buses operate at constant speed, so that travel time is proportional to the distance between 

nodes. 

2. A non-zero fraction of passengers would provide their destination information and this 

information will be used as real-time demand. 

3. Real-time demand is located at predefined zone activity centroids. 

4. Real-time demand is only a reflection of the final destinations of the set of passengers on 

the train. 

5. Each circulator route starts and ends at the commuter rail station (Node 1). 

6. The number of passengers boarding each circulator will not exceed its capacity. 

The first assumption simplifies the problem by accounting for travel time with its 

expected value, although stochastic travel time in a transportation network is common and 

unavoidable due to many factors. This assumption can be relaxed in future work to better 

describe the real and practical problem and ensure the robustness of the CRCNDP model. 

The next three assumptions address the demand used to drive the formulation. Although 

it is aggressive to assert that all passengers would provide transit operators their final 

destinations, we start with a 100% sample or complete destination data to test the algorithm and 

seek in later chapters the potential range of destination sample size that guarantees the value of 

“real-time” optimization. Depending on feasibility and availability, a variety of destination 

formats can be assumed applicable in the model formulation. As a starting point, this formulation 

assumes that real-time demand data will only show the general attractiveness of the destination 

zone, also called aggregated demand. Conventionally, the layout of the transportation network 

will affect the demand estimates since it predefines the accessibility of all existing modes in the 

network. However, in this report, the model is formulated to optimize the circulator route design 

especially for a certain set of real-time passengers, so that it is reasonable that the long-term 

interaction between service supply and traffic demand is left without consideration.  

The fifth assumption guarantees the seamless transfer concept and it also makes the 

CRCNDP problem conform to the structure of a Traveling Salesman Problem (TSP) problem. 

Lastly, since it is a newly-introduced commuter rail, it takes time for ridership of the commuter 

rail to build up. And during its early stages, it is reasonable to assume that circulators serving the 

commuter rail at each rail station are not capacity constrained. Even when the rail system 

becomes mature and a large number of passengers alight at the rail station, the non-constrained 

capacity concept can still be applicable if multiple circulators are employed along the same route 

obtained by the algorithm developed in this work. 

The formulation components of the CRCNDP problem are sets/indices, parameters and 

data, decision variables, the objective function and a constraint set. 
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SETS/INDICES 

In this network, the sets’ representation is simple and clear. Locations of the demand centroids 

are identified as the set G.  Since this demand labeling system makes no implications regarding 

the geographic size of the members of the set, many different levels of aggregation can be used 

to describe demand and these can be incorporated into this definition. Candidate bus stops 

surrounding the demand centroids are represented as the set  .  A demand centroid can be 

served by any of its surrounding bus stops depending on which are included in the route. And 

passengers can also alight the feeder bus at one stop even though they are destined for non-

adjacent centroids. Among all potential bus stop locations in set  , the algorithm will select a 

subset of locations as   to form a circulator route.  

         Circulator demand centroid locations 

           Candidate circulator stop locations 

         Subset of demand locations/nodes to visit in circulator route 

Depending upon the capability of the communication application between individual 

users and the circulator operator, street address or block level demand, or demand for Traffic 

Analysis Zones (TAZ’s) could be estimated. Block level demand aggregation seems to be a 

reasonable compromise between dis-aggregate street address data and potentially aggregated 

TAZ data, therefore, block level demand aggregation has been chosen as the basis for the 

algorithm development.  Since all train passengers are assumed to board the circulator, but the 

optimal stop set likely will not include all possible destination stops, some users will have long 

walks at the end of their trips.  The algorithm will include a “cost” associated with long walks 

that is directly proportional to the walk lengths and numbers of passengers taking the long walks. 

PARAMETERS AND DATA 

The first three parameters are the values of the cost components used in the multi-objective 

formulation of the CRCNDP. The default values of these parameters rely heavily upon the 

Transit Cooperative Research Program (TCRP) Report 78 (2002), which gives practical cost 

parameter values. 

       Transit bus operation cost ($/hr) 

         Equivalent cost of traveler’s in-vehicle travel time ($/hr) 

         Equivalent cost of traveler’s out-of-vehicle travel time ($/hr) 

The real-time demand data is considered as given since it is obtained and summarized 

before the CRCNDP algorithm is executed. Rectilinear distances for node to node pairs are used 

to determine the route design, which stops to be visited and in what order, and later to calculate 

the bus operating cost and traveler in-vehicle travel cost. Distance from node to centroid will be 

used to calculate traveler’s out-of-vehicle travel costs. 

           Real-time demand for service at demand centroid   

            Rectilinear distance from node   to node   

           Rectilinear distance from node   to demand centroid   
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The commuter rail headway will pose a strict constraint to the CRCNDP problem as the 

seamless transfer concept is implemented. That is, the circulator will be designed to provide 

enough passenger spaces to accommodate all alighting passengers at the rail terminal for every 

train arrival.  Typical values for headway (H) range from 15 – 30 minutes. The following two 

values for bus speed and walking speed are derived from Levinson (1983) for bus operating 

speeds and the TCRP Report 78 (2002) for walking speed. The default values for these 

parameters are 10 mph and 2.5 mph, respectively. The bus operating speed is estimated for city 

routes (as opposed to CBD or suburban routes) and the walking speed is an average value that is 

typically assumed in the transit planning process. 

         Commuter rail headway is the time interval between arriving trains 

         Circulator bus operating speed 

       Pedestrian walking speed 

The final three parameters are not given but can be easily calculated.     is a parameter 

that signifies which stop is going to serve which demand centroid. For each demand centroid, 

one stop will be determined to provide the shortest walking path. That is to say, each demand 

centroid is served by the stop in route   providing minimum walk distance. The sum of the 

demands for the centroids served by stop   produces the total demand served by stop   (  ). 

Dwell time is estimated by simply assuming a linear relationship between dwell time and the 

number of deboarding passengers developed by Levinsion (1983). The expression for dwell time 

in this report is             . 

          Binary variable indicating whether demand centroid   is served by stop   

in route   

          Total demand that is served by node   in route   

           Dwell time at node   

DECISION VARIABLES 

The decision variables used in this formulation are straightforward. Similar to decision variables 

in traditional TSPs, the binary variable     signifies if a trip from   to   is made during the 

tour. The variable     records the number of passengers that travel from   to   for a tour of 

the subset r. This variable is important to maintain so that accurate in-vehicle travel costs and bus 

operation costs can be computed for each segment of the route and flow conservation is 

maintained at all nodes within the subset r. 

       Binary variable indicating whether the bus travels from   to   on route r  

       Link pass variable indicating the number of passengers traveling from   to   on 

route r  

       Arbitrary real number at node   used for subtour elimination 

The formulation of the CRCNDP utilizes the subtour elimination strategy developed by 

Miller, Tucker and Zemlin (1960) and introduces the unrestricted decision variable   . Although 

this subtour elimination constraint does not provide as intuitive a method of subtour elimination 
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as other common methods seen today that identify and eliminate disconnected subtours, it solves 

problems well with the familiar TSP constraints that are discussed below in terms of high speed 

elimination. 

OBJECTIVE FUNCTION 

The objective function based on the model developed by Lownes (2007) contains four cost 

components: 
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These four components can be basically categorized into two competing parts: operation 

cost from the transit operator perspective and travel cost from the transit user side. The first two 

components are the two major cost portions to transit users – out-of-vehicle travel cost and in-

vehicle travel cost. Out-of-vehicle travel cost is computed by identifying the demand served by 

the walk trips and the lengths of these trips. And in-vehicle travel cost applies the travel cost for 

trip segment to each passenger onboard the vehicle during that trip segment. The third 

component identifies the operation cost to transit operators due to operating buses along the 

route. While passengers alight the circulator bus at each stop along the route, the dwell time will 

cause both in-vehicle travel cost to transit users that remain on the vehicle and operation cost to 

transit operator. And these are described by the fourth component. 

The model developed by Lownes (2007) accounts for those unserved nodes by a cost 

component defined as unserved demand cost. The unserved demand cost is applied to the total 

cost if there are demand centroids left out of the optimized route.  For long-term planning based 

on static travel data, once the route is optimized, it is going to be in place for a long time period.  

So that it is reasonable to include the unserved demand cost component to partially account for 

the interaction between the route design and the ridership of the feeder. There is a tradeoff 

between served demand cost and unserved demand cost when deciding how many stops to be 

included. With less stops included in the route, transit agencies’ operation cost and transit users’ 

travel cost can both be controlled, however, unserved demand cost will increase due to more 

people being left out of service, and vice versa. The problem defined in this report, is a different 

case, passengers are assumed to have no other access mode besides the feeder buses and they are 

providing their destination information on a real-time basis. The route is optimized and selected 

based on the destinations of passengers on each and every train. The route selected for this set of 

passengers would not affect the choice of the other set of passengers. In this real-time 

optimization problem, the penalty for impropriation of route design is actually accounted by 

inclusion of long-walk trips, which is also part of the out-of-vehicle travel cost. 
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CONSTRAINT SET 

The first two constraints, equations (2) and (3) represent the property of a typical TSP problem, 

which is every node should be visited exactly once. The optimal solution has to satisfy the 

requirement that only one incoming trip and one outgoing trip is associated with each node in the 

route.  Constraint (4) sets an upper limit of linkpass (the volume of passengers traveling along 

the link) for each selected trip segment. 
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Constraints (5), (6) and (7) further describe the property of linkpass in this particular 

CRCNDP problem in which (5) is a typical network flow conservation constraint. The number of 

passengers alighting at node   should be equal to the number of passengers arriving at this node 

on the bus less the number of passengers remaining on the bus as the vehicle leaves the node. 

Constraints (6) and (7) set the initial and final trip segment conditions for the route. Since 

demand served at node 1 (the rail station) is zero, the first segment contains all passengers that 

will alight at all stops in the route. And there will be no passengers coming back to node 1.  
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Constraint (8) incorporates the seamless transfer concept. The circulator bus has to come 

back to the rail station before the next train arrives.  

 

∑∑
   

    
   

  

 ∑  

 

                           

 

Since this formulation is dealing with a newly introduced commuter rail system, the 

ridership and operation frequency would be reasonably low so that one circulator bus is 

sufficient to serve the demand. For a mature commuter rail system (approximately full trains), 
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this CRCNDP formulation constraint should be slightly modified.  That is, more passenger 

spaces could be provided by using larger vehicles or smaller vehicles could be scheduled in 

tandem. 

Constraint (9) presents the Miller, Tucker and Zemlin (1960) subtour elimination 

constraint. There are different ways to eliminate subtours in the GAMs library and this technique 

is selected based on its computational efficiency and overall performance. 

 

      | |    | |                              

 

The final three constraints, just as they imply, restrict     to be binary,     to be a 

positive integer and    to be unrestricted. 

 

                                                                                    

                                                                         

                                                                                     

 

SUMMARY 

A mathematical nonlinear mixed integer programming model is formulated in this chapter. A 

seamless transfer concept is incorporated, both users’ and operators’ costs are included in the 

objective function and out of vehicle travel cost are also included in the objective function to 

penalize long walk trips due to the exclusion of some stop locations on the route. The 

formulation has both features of a combinatorial optimization problem and the Traveling Sales 

Problem, so that it is non-deterministic polynomial-time hard.  To realize real-time operation 

based on this formulation, a heuristic algorithm is developed in Chapter 4 to solve this problem 

in terms of an optimal or nearly optimal solution.  
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CHAPTER 4.  META-HEURISTIC ALGORITHM 

With the inherent complexity and the combinatorial NP-hard nature of the real-time CRCNDP 

problem, the complete enumeration method which searches over the whole solution space for the 

global optimal solution by simply enumerating and comparing the objective value for all possible 

solutions requires tremendous time even for a small size network. Note the objective of this 

report is development of a real-time practice aimed to identify an optimal route for passengers on 

the rail train during the time between train boarding and alighting. It is necessary to develop an 

algorithm which solves the real-time CRCNDP with a good solution in a limited time domain. 

The Tabu Search, due to its power and efficiency, has traditionally been used on 

combinatorial optimization problems and has been widely applied to many integer programming 

problems, routing and scheduling, traveling salesman and related problems. The real-time 

CRCNDP coincides with the property of the traveling salesman problem in its routing design. 

The basic concept of Tabu Search is presented by Glover (1977). The overall approach is to 

avoid cycling while searching for global optima by forbidding moves which take the solution, in 

the next iteration, to points in the solution space previously visited, hence the moves were 

marked as Tabu for a certain number of iterations (the number is usually fixed and called Tabu 

tenure). The Tabu Search starts with an initial solution and updates the best current solution at 

each iteration as the optimal solution after searching through the predefined neighborhood space. 

Again, recent moves are marked in one or more Tabu lists to avoid reversing the steps that have 

been made during the search process. There is no guarantee that every move leads the search to a 

better solution; actually, the fact that moves taken by a Tabu Search lead to deterioration of the 

objective function is part of Tabu’s diversification mechanism which enables the algorithm to 

search beyond local optima. 

The static Tabu Search defines the Tabu tenure of each move during the search process as 

a fixed number regardless of the performance of the incumbent solution reached by these moves. 

Improvement can be made when slightly modifying the Tabu tenure as adaptive to the 

performance of the incumbent solution. The rules of adaptive Tabu are intuitive: if the incumbent 

solution obtained after a certain move is superior to the best current solution ever stored, the 

Tabu tenure associated with its reverse move is extended to prevent the search away from 

solution spaces related to this move; similarly, for moves leading to deteriorative solutions, the 

algorithm marks its reverse move as Tabu and decreases its tenure for later searches to quickly 

step back from solution space with worse performance. There are a variety of ways to execute 

Tabu Search, and the performance of these various methods is really a problem-specific issue. 

Adaptive Tabu Search is applied to a small size network to test its practicality. 

It is obvious that there is a tradeoff between improved computational speed and quality of 

the optimal solution. In this chapter, the quality of the optimal solution obtained by adaptive 

Tabu Search will also be evaluated. 
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ADAPTIVE TABU SEARCH FOR THE REAL-TIME CRCNDP 

The solution framework based upon adaptive Tabu Search is illustrated in Figure 2. The 

algorithm first defines the number of stops to be included in the route and then searches in the 

neighborhood where alternative solutions contain the same number of stops; while solutions are 

still feasible, the algorithm increases the number of stops by one and performs the search process 

until it reaches a region where most solutions are infeasible. The decision on the number of stops 

to be visited by a route is controlled outside the local search – Tabu Search procedure.  

Generally, with more stops included in the route, time spent traveling along the route, as well as, 

time spent dropping off passengers at these stops increases but passenger walking times 

decrease.  Most of the feasible solutions are typically found in the region where a smaller 

number of stops is selected to construct the route. For this single route design problem, the 

strategy takes advantage of this characteristic of the problem while keeping the search procedure 

well controlled. 

Starting from a random selection of a single bus stop location, together with the rail 

station, two stops are firstly included in the route to construct an initial solution, then local search 

is performed over predefined neighborhood solutions, and guided by the adaptive Tabu Search 

algorithm, solutions are evaluated and updated accordingly. As noted previously, while solutions 

are still feasible, the number of stops is increased by one and the initialization and search 

procedure are carried out again. 

 

 

Figure 2. Adaptive Tabu Search Solution Framework. 
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Initial solution 

The effectiveness of Tabu search, similar to many other Meta-heuristics, is highly dependent on 

the initialization success – obtaining a good starting solution. Since our model formulation 

assigns higher unit cost to out-of-vehicle travel time than to in-vehicle travel time, the first 

intuition for constructing a good starting solution is serving dense demand centroids primarily to 

shift portions of long walk trips to bus trips and further reduce total travel cost.  The original 

procedures for initial solution construction are as follows: 

1. Define the number of nodes | | including node 1 to be covered by the route, note that 

node 1 is for the rail station and is always kept in the route. 

2. Randomly select the | |    nodes (demand centroid or stops) associated with the 

highest demand and together with the rail station (node 1) form a set  . 

3. Call GAMS to solve CRCNDP with the set  , if it is a feasible route to the CRCNDP, 

keep it as the initial solution; if not, randomly replace members of the set until a feasible 

set   is encountered and record it as the initial solution. 

While this works well for ideally designed networks (Lownes, 2010), however, 

difficulties arise when the concept is applied to more realistic case studies. If the stop nodes 

associated with the highest demand centroids do not generate a stop set comprising a feasible 

route, the initialization procedure will be highly dependent on a random process to select the 

stops to be included in the route. When it comes to a solution space where feasible solutions are 

sparse, a long time is required to finally construct a feasible initial solution since these selections 

are completely random and each time there is a low probability of finding a feasible solution 

especially when there is no guidance from any historical memory mechanism. 

After experimentation was used to determine why this initialization proposal often fails, 

another procedure was developed. Instead of seeking an initial solution with potentially lower 

total cost, this initialization procedure conservatively prefers a solution with a greater likelihood 

of meeting the feasibility constraints. This procedure selects clustered stops with a priority of 

producing a feasible route. By having stops close to each other, the vehicle travel time which is a 

major component of the total time spent on a route, is tightly controlled, and it avoids violation 

of the time constraints and maintains the solution feasibility. The procedure is shown as follows: 

1. Define the number of nodes | | including node 1 to be covered by the route, note that 

node 1 is for the rail station and is always kept in the route. 

2. Use the | |    nodes (demand centroid or stops) from the best current solution and 

select an additional one from the rest of the stops with the least total distance to all the 

| |    nodes.  

3. Call GAMS to solve CRCNDP with the set  , if it is a feasible route to the CRCNDP, 

keep it as the initial solution; if not, randomly replace members of the set until a feasible 

set   is found and record it as the initial solution. 

 

The initialization procedure is shown in Figure 3. The differences between the two 

procedures are as follows: the previous procedure prefers to add a node serving high demand and 
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the selected one prefers to add a node that is close to the current set of stops.  Inclusion of a 

node serving high demand can potentially reduce long walk travel costs; however, if the 

additional node is itself far from the selected set of stops, the solution created by including this 

node would violate the time constraint and thus cannot be used as a starting solution. When this 

occurs, the algorithm switches to the other procedure that selects the stop clustered with the 

current stops in the set. In this way, feasibility is maintained first, and optimality is left for later 

neighborhood searches and process updates. The selected procedure for initialization is actually 

more efficient time-wise and is proven to work well for both small cases and large cases. 

 

 

Figure 3. Initial Solution Construction. 

Neighborhood 

The neighborhood definition in Tabu Search can also be developed in a variety of ways. For this 

particular CRCNDP problem, a simple and easy to implement way is to randomly select the 

leaving node within set   and replace it with a random node outside set  . However, our goal is 

to make the best use of the limited iterations to which the Tabu search is restricted; the candidate 

stop set should be smartly selected for CRCNDP evaluation to guarantee the optimality within a 

reasonable time domain. The employed steps are as follows: 

1. Pair up every node in set   with every node outside set   and each pair can be regarded 

as a possible move for the incumbent solution to get to its neighborhood solution. 

2. Select the move based on two guiding strategies to form a new set as a neighborhood 

solution.  Both of the following techniques are being used. For any current solution, the 

algorithm would first perform technique (a) to construct a neighborhood solution. 

Technique (b) will be employed either when the neighborhood solution is infeasible or 

the current solution is being visited again. 
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a) Select the non-Tabu move with highest value of attributes defined as    , 

    
  

∑           
 

b) Randomly select from the available moves. 

When identifying the node to be switched into the neighborhood, it is preferred that the 

replacing node is associated with high demand and its inclusion into the route does not incur long 

travel distance which may induce more travel time cost and operation cost. The move 

attribute    , calculated as the ratio of demand served by the replacing node to the total distance 

between this node to all other nodes excluding the replaced node in the route, describes this 

preference mathematically.  

Random selection is also employed for the following two reasons: Cycling would occur 

when the same solution was revisited, if all steps are predetermined by known parameters 

without involving any randomness. The random process does not guide the search directly to the 

global optima.  However, it helps to traverse the solution space and the combination of more 

move strategies provides opportunities to preserve the aggressiveness of Tabu Search by 

diversifying the search to new regions.  

Evaluation and updating 

This is the final step taken to ensure that the search traverses infeasible neighborhoods and 

escapes from local optima to possibly reach the global optimum, and the idea of this procedure is 

shown in Figure 4.  GAMS is called to solve CRCNDP with each neighborhood set   and the 

related objective value is recorded for the solution evaluation and updating. 

1. If a neighborhood solution (incumbent solution) reached by a move performs better than 

the current best solution, update the current best solution with the incumbent and mark 

the reverse move as Tabu with a tenure as X+1. (X is a predefined parameter, usually 3); 

2. If a move yields an infeasible neighborhood solution, mark the reverse move as Tabu 

with a tenure as X and make no update to the current best solution; 

3. If a move yields an incumbent with no improvement, mark the reverse move as Tabu 

with a tenure as X-1 and make no update to the current best solution; 

4. After a set number of iterations fails to update the current best solution, randomly select 

new neighborhood solutions until a feasible one is located. 

Regarding each move or switching pair of nodes as an attribute of the current solution, 

we would be able to grade its reverse move according to the performance of the neighborhood 

solution to which each move has led.  The reverse move, Tabu, is marked for a longer duration 

to keep desirable attributes of solutions available in later search processes. For example, if a 

move takes the search to a neighborhood solution that is better than the best solution, this 

attribute (the move or the switch) of the solution would want to be kept longer in later search 

processes. Conversely, if a move takes the search to worse solutions, the algorithm quickly steps 

back from the solution with poorer performance, hence it decreases the tenure of its reverse 



 30 

move. By editing the Tabu tenure according the performance of a neighborhood solution, the 

memory mechanism is maximized to better guide the solution search. 

 

 

Figure 4. Solution Evaluation and Updating. 

RESULTS SUMMARY 

Comparison results on the small size case study with 12 bus stop nodes in the network (Lownes, 

2010) and the larger application with 10 centroids and 20 stops are shown in Table 2. 

Table 2. Summary of optimal results based on three methods. 
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It can be seen from Table 2 that the optimal solution obtained by the Enumeration 

Method, Static Tabu Search and Adaptive Tabu Search are fairly comparable in quality. 

However, regarding the computational time, the Adaptive Tabu Search, compared to both the 

Complete Enumeration method and the static Tabu Search, applied on the two networks, reduces 

the computing time very significantly. The time taken by the adaptive Tabu Search algorithm to 

solve for a near-optimal solution falls within the time frame from passengers alight the rail till 

they get to the feeder bus. 

Table 3. Comparison of two methods’ capability in capturing the true optimal solution. 

 

 Probability of hitting Global Optimal 

Network Size 
Static Tabu Search  

(Lownes, 2010) 
Adaptive Tabu Search 

12 Centroids 40% 80% 

10 Centroids/20 Bus 

Stops 
10% 60% 

 

Table 3 shows that with the adaptive Tabu search algorithm, 8 times out of 10 tests, the 

global optimal solution for the network with 12 stops was captured, and for the 10 centroids/20 

stops network, 60% percent of the tests identified the true optimal solution.  Using the static 

Tabu Search, the probabilities of finding the global optimal solution are 40% and 10% for the 12 

nodes and 10/20 nodes networks.  One might expect that the computational power of the 

Adaptive Tabu Search could be even more significant on larger networks.  

SUMMARY 

In this chapter, the Adaptive Tabu Search based algorithm was developed and applied to two 

sample case studies.  The results show that the Adaptive Tabu Search based solution framework 

outperforms both the exhaustive search method and the static Tabu Search method (Lownes, 

2010). With the inherent strategy in Adaptive Tabu Search to adjust the tenures for each Tabu 

move according to its performance, the computational time taken to solve the problem has been 

significantly reduced. Also, the better neighborhood definition and the efficient initial solution 

construction procedure also helped to reduce the computational time to realize real-time 

operation. 

 The next chapter will employ simulation techniques to identify the minimum fraction of 

passenger destination information that would guarantee the practical value of real-time 

optimization for the CRCNDP.  Since there are many practical obstacles in gathering complete 

passenger travel destination information especially on a real-time basis, this issue must be 

addressed.  
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CHAPTER 5.  NUMERICAL TESTING RESULTS 

The meta-heuristic algorithm developed for the CRCNDP in the previous chapter optimizes the 

circulator route assuming that all passengers alighting the arriving train would provide their 

destination information. However, this is practically difficult to realize for many reasons, 

passengers’ unwillingness to give out their information, technical communication obstacles 

between passengers and transit operators and so on. Therefore, another question comes with our 

algorithm, which is what fraction of passenger destination information would guarantee the 

practical value of real-time optimization for the CRCNDP. In this chapter, a series of scenarios 

will be developed to characterize the potential range of destination sampling fraction cases and 

how they depart from the base case described in the previous chapter.  A Monte Carlo 

simulation technique is employed to determine how many and which passengers would provide 

their destination information in each scenario. The meta-heuristic algorithm will be applied to 

each case and the aggregate of all simulated cases will describe the “distribution” of likely 

differences.  This frequency distribution of likely differences, compared to the base case defined 

as the average performance of all possible routes, can be used to easily describe the potential 

value of real time optimization. 

NUMERICAL TESTS 

To justify the value of CRCNDP optimized based on limited destination information, a few 

assumptions must be made.  

1. All passengers will board the circulator bus regardless of the actual route configuration, 

whether or not they have provided their destination information. 

2. All passengers have and use perfect information on which stop to get off once they board 

the bus, that is to say, they know the nearest stop in the route to their destination and will 

alight at this stop. 

3. For those calculated optimal routes that violate the seamless transfer constraint due to 

more dwell time with the load of all passengers in the train, more circulator buses will 

operate along the same route to guarantee that each bus has reduced dwell time and can 

come back to the rail station within the train headway time.  

With the same 12-node and 10 Centroids/20 Stops network configurations used for 

algorithm development, it is assumed that the same sets of passengers will arrive at the rail 

stations. The evaluation procedure defines 7 scenarios to characterize the potential range of 

destination cases, that is 30%, 40%, 50%, 60%, 70%, 80% and 90% of all passengers alighting 

the train would have provided their destination information. For each scenario, Monte Carlo 

techniques are used to decide randomly which passengers would give their information and form 

a demand vector for the Adaptive Tabu Algorithm to get an optimal route.  Then all passengers 

would board the circulator bus running along this optimal route, and a total cost associated with 

this optimal route and the set of passengers will be calculated as the evaluation result. For each 
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scenario, the above procedure will be repeated 100 times in this numerical test, and the average 

total cost and its standard deviation will be recorded for scenario comparison.  

TESTING RESULTS 

 

 

Figure 5.1. Numerical Results for 12-node Network. 

 

Figure 5.2. Numerical Results for 10 Centroids/ 20 stops Network. 

The results in Figure 5.1 and Figure 5.2 show that with more passengers providing their 

destination information, the algorithm for solving real-time CRCNDP produces a better route 
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configuration to serve all passengers boarding the feeder bus. This is intuitive in the sense that 

accurate information of passenger demands helps the model to perform better. In the 12 node 

network, the variability associated with the performance of the optimal solution obtained based 

on different sample sizes becomes larger as the fraction of known destinations decreases. Large 

variability, in transportation systems, usually indicates unreliable service, and is undesirable. 

However, the variability based on different samples for the 10 Centroid/20 Stops network 

doesn’t behave exactly the same way. Although the trend of variability can be generalized as 

decreasing with the increasing percentage of known destinations, the variability in the scenarios 

where 70% and 80% of passenger destinations are obtained is slightly higher than that in the 

scenarios where less passenger information is provided. This misbehavior can be introduced by 

the meta-heuristic algorithms since they aim to find an near-optimal solution and there is no 

guarantee that every time the same solution is obtained and that a bound can be stated on the 

objective value. Also, it can be seen after comparing the variability between the two scenarios on 

the networks where the same amount of travel information can be obtained, the variability in the 

10/20 nodes network is always larger than in the 12 node network. With more nodes in the 

network the solution space is significantly enlarged. The local search path taken by the Tabu 

Search algorithm is diversified and the optimal solutions obtained can be quite different from 

each other. And it turns out that the variability in larger network is substantial. 

 

 

Figure 6.1. Numerical Results for 12-node Network. 
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Figure 6.2. Numerical Results for 10 Centroids/ 20 stops Network. 

In Figure 6.1 and Figure 6.2, the red lines show the average performance of all possible 

routes in the two sample networks. The average performance of all possible routes was used as a 

base case to test the practical value of the real-time route optimization. It can be seen that the 

optimized route obtained by the Adaptive Tabu Search algorithm reduced the total cost 

significantly compared to the base case.  In both cases, even if only 30 percent of passengers 

provide their travel information, the optimized route obtained based on their input can still 

perform better than the average performance of all possible routes. 

As the performance of the optimal solution obtained based on the Adaptive Tabu Search 

improves with the amount of available travel destination information, the following is a bold 

assumption made by the author:  there is a threshold across which more destination data given 

by additional passengers would guarantee the practical value of searching for the optimal route 

obtained by the meta-heuristic method against either staying with an currently operating route or 

the average performance of all possible routes.  

PROPOSED METHODOLOGY TO FIND THE MINIMUM DESTINATION INFORMATION  

To find the threshold across which more destination data given by additional passengers would 

guarantee the practical value of finding the optimal solution on a real-time basis, the following 

procedure is proposed: 

1. Set up the heuristic or meta-heuristic algorithm for solving the CRCNDP problem; 

2. Assume a set of arriving passengers and each of them with fixed destination information. 

Since this procedure is mainly designed for testing purposes, arriving passengers and 

their destination information can be simply assumed, or based on observed average 

demand data and land use information, or it could be gathered from a set of arriving 

passengers on a real-time basis. 
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3. For this specific set of passengers, employ a Monte Carlo sampling technique to 

randomly select samples of passengers who provide their destination information. In this 

step, two parameters must be predefined: the percentage of passengers to provide travel 

information, and the number of random samples in each scenario where the fraction of 

“know destination” is fixed. 

4. Run the heuristic or meta-heuristic algorithm for each single sample selected in step 3 

and obtain the optimal solutions. Then load all the passengers to the optimal routes 

achieved in each sample and calculated the objective function value.  It is obvious that 

not all the optimal routes would still be optimal for the set of all arriving passengers, the 

penalty for non-optimal design is accounted for by additional cost caused by long walk 

trips, or could be taken into consideration by other ways if the model was formulated 

differently. 

5. Compute the average objective function value and its standard deviation for each scenario 

representing a chosen fraction of known travel destinations.  

6. Define a base case, which can be either the average performance of all possible routes for 

the network or the currently operating route. It is easier to evaluate the current route by 

loading passengers on the route and calculating the total cost. If the average performance 

of all possible routes is selected as the base case, when the size of the network gets large, 

it might be too time-consuming or computational complex to exhaust all possible 

solutions to finally produce a base case result for comparison. In this case, sampling 

techniques over the entire solution space can be employed to reduce computational 

efforts. 

7. Compare the average cost of each scenario to the base case, the minimum fraction of 

travel information to guarantee the real-time optimization to have equivalent performance 

as the current route or the average case will be identified. 

Employing the Tabu Search algorithm to solve for an optimal solution is a problem-

specific matter. There are no general guidelines to define for which problem and under what 

conditions the optimality is guaranteed. Numerical tests before its application in practice, 

especially for real time operation tend to be necessary. With the aim to provide a route 

configuration that is superior compared to those currently operating, these numerical tests 

combined with simulation techniques can to some degree indicate the level of cooperation 

needed from transit users – that is their willingness and capability in providing real-time travel 

information. 

SUMMARY 

In this chapter numerical tests have been performed on the two sample cases to see the effect of 

available destination information on the performance of the optimal route obtained by the 

proposed solution algorithm. A series of scenarios have been developed to characterize the 

potential range of destination sampling fraction cases and how they depart from the base case 

described in the previous chapter.  Monte Carlo simulation techniques are used for sample 
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selection in each scenario. Performance location and variability behaves as expected. With larger 

travel data sampling fractions, the solution performs better and behaves more like the true 

optimal. This chapter has also proposed a methodology to find the threshold across which more 

destination data given by additional passengers would make no significant improvement to the 

optimal solution. 
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CHAPTER 6. CASE STUDY 

In previous chapters, the development and performance of the CRCNDP and the adaptive Tabu 

Search solution method was illustrated, and examples of different network structures have been 

tested. During the developmental stages it was found that the adaptive Tabu search method 

performed well, providing good (and in some cases, optimal) solutions in a very short amount of 

time compared to the enumerative method. This performance generates confidence in the 

adaptive Tabu search’s ability to provide good solutions on a real-time basis. However, these 

examples are limited since they are constructed using a small network for experimental purposes. 

To guarantee its feasibility for real size problems, the adaptive Tabu Search solution method will 

be implemented to three real size cases abstracted from the Martin Luther King (MLK) station of 

the new MetroRail system in Austin, Texas.  

NETWORK DESCRIPTION 

Figure 7 provides an aerial overview of the MLK Station area. The black circle centered on the 

MLK station represents a 2-mile radius coverage area used to limit the demand zones served by 

the station. The station, UT campus and the CBD are all identified in the map. 
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Figure 7. Overview of MLK Station Coverage Region. 

In Figure 8 the red square identifies the MLK station. The green circle centered on the 

MLK station represents a 2-mile boundary about the station used to limit the number of demand 

zones that are considered in the analysis.  The demand centroids are located as shown as green 

squares and represent those passengers that are theoretically considered to have access to 

commuter rail at the destination end of the commuter rail trip. In this case study application, 

there are 46 demand centroids within the 2-mile boundary and 84 candidate stop locations (pink 

dots) from which the route to serve MLK Station will be constructed. The demand of each of the 

46 centroids is given in Table 4. 
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Figure 8. Demand Centroid (46) and Candidate Stop Locations (84) within MLK 

Station Coverage Region. 
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Table 4. Case Study Zonal Demand. 

 

Centroid Demand Centroid Demand Centroid Demand Centroid Demand 

1 6 13 5 25 1 37 4 

2 6 14 2 26 2 38 2 

3 5 15 6 27 4 39 2 

4 0 16 3 28 3 40 4 

5 6 17 2 29 3 41 1 

6 2 18 1 30 6 42 1 

7 10 19 5 31 4 43 1 

8 10 20 3 32 0 44 10 

9 6 21 4 33 4 45 0 

10 10 22 2 34 0 46 1 

11 1 23 3 35 3 
  

12 6 24 6 36 1 
  

 

Test Results showed that the adaptive Tabu Search Algorithm solves this case study on 

average in 105 seconds. This is much less than the on-train travel time for essentially all 

passengers. Even if destination information cannot be collected before passengers alight the 

train, in which case the algorithm could still be run while passengers walk from the train station 

to the feeder bus. This time is estimated as 3 to 5 minutes and it is still adequate for the algorithm 

to run to a near-optimal or optimal solution. Results for 10 test runs are shown in Table 5. 
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Table 5. MLK Station Case Study Results. 

 

Run # 
Objective 

Value 

Optimal 

Solution 

Calculati

on Time 

(S) 

01 1890.47 1, 16, 38, 41, 48 103 

02 1912.9 1, 16, 41, 48, 64 107 

03 1864.56 1, 16, 36, 41, 48 100 

04 1962.12 1, 38, 45, 47, 78 144 

05 1942.02 1, 8, 15, 38, 80 102 

06 1897.83 1, 16, 38, 47, 75 103 

07 1905.52 1, 16, 46, 75, 84 95 

08 1895.84 1, 15, 16, 38, 75 99 

09 2062.43 1, 8, 15, 23, 38 101 

10 1903.77 1, 15, 16, 38, 41 100 

 

As shown in Table 6.2, the computational times for each execution of the adaptive Tabu 

Search algorithm lie in the range from 1.5 minutes to 2 minutes on a 2 dualcore, hyperthreading 

3.73 GHz Xeon processor with 2GB of memory. In the case that the optimization must be 

performed while transit users are walking to the feeder bus from the rail station, this algorithm 

should work fine to get a fairly good solution. In the case that destination information can be 

collected and well-prepared way before transit users alight the train, this algorithm can be 

executed more than one time to better search for a good solution. In short, the adaptive Tabu 

search should be applicable to practical problems in a real feeder system serving a commuter rail 

station. 

In figure 9, the best route for this case study is depicted in the map. Since in the assumed 

demand data, centroids associated with the UT campus were intentionally assigned larger 

demands than other centroids, the optimal route, not surprisingly, provides service primarily to 

the University area. 
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Figure 9. Route solution for the 46/84 MLK network: Best Route. 

Although the network structure and size are fairly representative for a feeder system 

serving a commuter rail station, additional tests are performed to find the computational time 

required for problems of different sizes. A smaller network with 30 centroids and 50 candidate 

bus stops and a larger network with 62 centroids and 118 candidate bus stops are both 

constructed for experiments. The network configuration and the optimal route obtained based on 

the Adaptive Tabu Search are shown in Figure 10, 11, 12 and 13. The demand data is included in 

Table 6 and Table 7.  
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Figure 10: Demand Centroid (30) and Candidate Stop Locations (50) within MLK 

Station Coverage Region 

 

Table 6. Case Study Zonal Demand in the 30/50 network. 

Centroid Demand Centroid Demand Centroid Demand 

1 3 11 10 21 6 

2 6 12 0 22 6 

3 1 13 5 23 6 

4 5 14 4 24 0 

5 0 15 2 25 5 

6 1 16 4 26 4 

7 10 17 4 27 1 

8 5 18 1 28 6 

9 10 19 0 29 2 

10 4 20 0 30 3 
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Figure 11. Route solution for the 30/50 MLK network: Best Route. 
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Figure 12. Demand Centroid (62) and Candidate Stop Locations (118) within MLK 

Station Coverage Region. 
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Table 7: Case Study Zonal Demand in the 62/118 network 

Centroid Demand Centroid Demand Centroid Demand Centroid Demand 

1 2 17 3 33 3 49 1 

2 3 18 2 34 4 50 10 

3 4 19 2 35 3 51 0 

4 4 20 3 36 2 52 2 

5 4 21 2 37 3 53 0 

6 3 22 3 38 4 54 3 

7 10 23 2 39 0 55 0 

8 2 24 0 40 4 56 2 

9 10 25 3 41 1 57 3 

10 3 26 4 42 0 58 2 

11 10 27 2 43 4 59 0 

12 2 28 4 44 0 60 3 

13 4 29 2 45 2 61 2 

14 4 30 3 46 0 62 2 

15 4 31 1 47 0 

  16 0 32 1 48 3 

   

 

Figure 13. Route solution for the 62/118 MLK network: Best Route. 
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The demand dataset, for these two networks includes random demand assignments except 

for the centroids associated with the UT campus where larger demands have been assumed.  

Again, the optimal route provides service to the University area with priority because of the 

larger specified demands. As shown when centroids are densely located as in the 62/118 MLK 

network, the probability of a given stop serving more than one destination is higher, so fewer 

stops can serve a larger area, while if demand centroids are far apart, as in the 30/50 MLK 

network, the feeder buses must stop at more locations to provide service to an equivalent number 

of destinations.  

 

 

 

Figure 14. Computational Time for three networks of different sizes. 

The computation complexity of the Tabu Search based heuristic developed for the 

CRCNDP are mostly dependent on the predefined number of iterations. Hence, without looking 

closely at the problem and the specific algorithm developed for it, the complexity of 

computational efforts taken by the algorithm would not be revealed. However, to some degree 

meta-heuristic methods guarantee that with the scale of the problem increasing, the 

computational efforts do not necessarily expand dramatically and it provides practically useful 

values where solution time duration is a tight constraint for the problem solving. 

In the CRCNDP problem, it can be informally said that the adaptive Tabu Search method 

adequately takes the place of the exhaustive search process to make decisions on which potential 

stops to be included in the route, and it significantly reduces computational effort. While 

complexity analysis is not valid on heuristic methods, approximate estimation of computational 

time taken by the algorithm is still worthwhile. 

The first decision to be made within the adaptive Tabu search algorithm is the number of 

stops used to construct the route. Tests on the network with 46 centroids and 62 stops within the 

solution space show the algorithm searched for solutions that included from 2 stops to 5 stops, as 
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4 major steps (2, 3, 4 and 5). The algorithm searches for solutions with 2 stops, and then 

constructs a starting solution with 3 stops by smartly adding one stop to the best current solution 

with 2 stops, and so on. In each major step, local searches of a user-defined number of iterations 

are performed to update the best current solution. After local search over the solution space with 

5 stops was completed, the algorithm selects the best solution it has ever encountered as the 

optimal solution. The computational time taken by the algorithm can be roughly calculated as 

follows: 

                         

     is the time taken for a single route optimization with selected stops. Each route 

optimization has constraints as   | || |  and variables as   | || | , again    is the set of 

selected stops and   is the set of all candidate stops.   is a factor larger than or equal to 1 and is 

used to account for additional evaluations performed in each major step due to the existence of 

infeasible or interior solutions.   is the number of major steps defined in the algorithm. 

In Figure 14, the blue dots show the average computational time for each of the three 

tested networks with 10 random runs and the error bars represent the standard deviation of 

computational time of these random samples. The average computational time for the three 

tested networks formed a polyline. The smaller network took longer time to solve due to the fact 

that the algorithm has to go through 6 major steps to finally search over solution space that 

contains 7 stops to get a good solution while the medium size network was solved in only 4 

major steps. As to solve the medium size network and the large size network took the same 

number of major steps, the time taken for each evaluation in every major step becomes the 

dominant factor. Although the number of steps is the same as the other networks the network 

with more centroids and stop nodes requires significantly more computational effort in each 

single evaluation. This explains the second part of the polyline. 

SUMMARY 

In this chapter, the adaptive Tabu Search solution method has been implemented to three real 

size cases abstracted from the Martin Luther King (MLK) station of the new MetroRail system in 

Austin, Texas to test its feasibility for real-time operation. The results have shown that the 

solution algorithm works for the small, medium and large size network, although the medium 

size network is representative for real world problems. A detailed explanation for the 

computational time difference for the three cases has also been provided after analysis over the 

algorithm procedures. The developed solution framework can be a candidate option for real-time 

operation in CRCNDP.   
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CHAPTER 7.  SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Commuter rail has been widely recognized as an effective and practicable solution to ever-

worsening urban congestion caused mainly by commuter trips since it offers the potential for 

attractive, high-quality rapid transit service at a reasonable cost. New commuter rail systems are 

typically built along old freight rail tracks.  Although use of existing right-of-way reduces time 

and cost of construction, the paths do not provide for optimal station locations.  Therefore 

minimizing traveler access time from rail stations to final destinations is critical for commuter 

rail to be a reasonable option for commuters. 

This report aims to develop a robust optimization tool using meta-heuristic approaches to 

design circulator routes on a real-time basis with real-time demand data. The CRCNDP involves 

minimization of generalized costs subject to a variety of constraints. The decision one seeks to 

make is the determination of a circulator configuration including the stops to be visited and the 

route among them. An adaptive Tabu Search method is employed to solve the problem in an 

efficient manner to realize real-time operation. 

The sections in this chapter are organized as follows. In section 7.1, the principal features 

of the solution approaches designed for the CRCNDP are reviewed and a summary of 

conclusions for the numerical results derived from computational tests is discussed. Section 7.2 

presents a brief discussion of the limitations of the current approaches and possible directions for 

future research are also given. 

SUMMARY AND CONCLUSIONS 

As mentioned, the CRCNDP problem addressed in this report involves finding a feeder bus route 

configuration that achieves a desired objective with a variety of given constraints. Related 

literature describing previous solution approaches to the Transit Route Network Design problem 

has been reviewed. As mentioned by several researchers including Baaj (1990), several main 

sources of complexity often preclude finding a unique optimal solution for the Transit Route 

Network Design problem. Some of these are also applicable to CRCNDP and they are discussed 

as follows: (1) great difficulty in defining the decision variables and expressing the objective 

function; (2) combinatorial complexity arises from the discrete nature of the route design 

problem, making the CRCNDP NP-hard; (3) many important tradeoffs among conflicting 

objectives need to be addressed, making the CRCNDP an inherently multi-objective decision 

making problem. Additionally, for our solution approaches to be applied to real-time operation, 

computational efficiency is another challenge to this report. 

Previous approaches that were used to solve the Transit Route Network Design problem 

can be generally categorized into two major groups: (1) analytical optimization models for 

idealized situations; (2) meta-heuristic approaches for more practical problems. Few of them 

really focused on the circulator route design, not to mention an algorithm developed for real-time 

operation. Building on several previous approaches, mainly the Tabu Search method developed 

by Lownes (2008), the solution methodology proposed in this report includes the following 
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major features: (1) Ability to account for the inherent tradeoffs between conflicting performance-

measures; (2) Systematic heuristic methods for circulator route generation and improvement; (3) 

systematic use of context-specific knowledge to guide the search technique; (4) Ability to 

provide a route configuration that includes the exact bus stop location rather than corresponding 

to just demand centers; (5) Computational efficiency to obtain an optimal or near-optimal 

CRCNDP solutions to apply real-time control. 

The proposed approaches – Adaptive Tabu Search consists of three main components: an 

initial candidate route generation procedure that generates a feasible route as a starting point; a 

neighborhood definition and search procedure that searches locally for a solution with better 

performance; a memory mechanism that guides the search procedure to avoid cycling and to 

search beyond local optima for a possibly global optimum. 

Numerical tests have been performed to find the minimum fraction of passengers’ 

destination information that guarantee the practical value of the real-time optimization control. 

And results have shown as expected that with more passengers providing travel information, the 

algorithm produces a better route configuration to serve all passengers boarding the feeder bus 

and that the variability associated with the performance of the optimal solution based on sample 

size becomes larger as the fraction of known destinations decreases. However, a bold assumption 

is made in this report, there is a threshold across which that more destination data given by 

additional passengers would guarantee the practical value of real-time optimization. The trend 

can be seen from the figures in Chapter 5 and is intuitively supported by the inherent nature of 

meta-heuristic method aimed at obtaining near-optimal or good enough solutions in an efficient 

manner rather than the global optimum. The procedures are proposed to find the threshold for the 

minimum fraction of travelers that would need to report their destinations via smart phone to 

guarantee the practical value of optimization based on real-time collected demand. 

The adaptive Tabu Search algorithm was finally applied to three case study networks that 

surround the MLK station on the Austin MetroRail commuter rail line. The three networks are 

marked as small, medium and large networks. The number of demand centroids in the three 

networks is 30, 46 and 62 respectively, and the number of candidate bus stop locations is 50, 84 

and 118. Although, from the practical point of view, the size of the medium network is large 

enough for a real world circulator system, the algorithm developed in this report produced a good 

solution for all these three problems in a limited time domain.  

FUTURE RESEARCH DIRECTIONS 

One extension of this work is the accommodation of multiple routes in the formulation and 

solution methods. The current methods assume that multiple vehicles follow the same route to 

provide unique service. This situation assumption facilitates the communication with regard to 

transit service between operators and users. There are no ambiguities regarding which vehicle 

should the passenger board since all buses are going to travel along the same route. Incorporation 

of multiple routes would enable the system to reduce the amount of long walk trips and the 

associated costs. The inclusion of multiple routes will certainly increase the complexity and of 
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the current solution method. A more sophisticated initial solution construction method and a 

more complicated neighborhood search procedure might have to be developed to further 

guarantee the possibility of real-time operation. 

For this algorithm to be implemented into practice, additional application should also be 

developed. A smart phone app to bridge the communication between transit operators and users 

would be necessary. This app should enable the users to provide destination information in 

various formats such as TAZ centroids, block level or a detailed street number address.  And it 

should also facilitate the transit operator data collection and preparation.  

The numerical results were tested using a computer equipped with a 2 dualcore, 

hyperthreading 3.73 GHz Xeon processor and 2GB memory. From the transit operation 

perspective, this type of machine or an even faster machine is achievable. So that an 

operationally and economically efficient optimal circulator network can be obtained in a real-

time basis, making the commuter rail a more viable option for commuters. Benefits can be 

gained through less traffic congestion, reduced air pollution and lower energy consumption. 
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APPENDICES  

APPENDIX A: CODE ILLUSTRATING IMPLEMENTATION OF THE ADAPTIVE TABU SEARCH 

ALGORITHM 

 

#include <iostream> 

#include <cstdlib> 

#include <fstream> 

#include <iomanip> 

#include <ctime> 

#include <string> 

#include <sstream> 

 

using namespace std; 

 

//Function to obtain the index number of the maximum demand node (used in 

generating initial solution) 

 

int maxIndex(double a[], int size, int check[]); 

 

//Function to obtain the index number of the minimum demand node (used in 

generating initial solution) 

 

int minIndex(double a[], int size, int check[]); 

 

//The qsort() function... to sort the set r[][] 

 

int compare (const void * a, const void * b) 

{ 

  return ( *(int*)a - *(int*)b ); 

} 

 

int factorial (int num) 

{ 

 if (num==1) 

  return 1; 
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 return factorial(num-1)*num; // recursive call 

} 

 

int i,j,t,z,o,v,check,check2; 

 

int carry[84][84] = {0}; 

 

int main() 

{ 

 srand(time(0));  // Initialize random number generator. 

  

    //The time function will determine the number of seconds elapsed between 

the start and finish of the program 

 

 time_t t1, t2; 

 t1 = time (NULL); 

 

 /*the variables and paramters defination*/ 

 

 const int CENTROIDS = 46; 

    const int NUMSTOPS = 84; 

 

    double demandCEN[CENTROIDS] = {0}; 

    double demand[NUMSTOPS] = {0}; 

 double gamma[NUMSTOPS][CENTROIDS] = {0}; 

 int lambda[NUMSTOPS][NUMSTOPS] = {0}; 

 

 /*demand and distance data from text files*/ 

 

 ifstream fin("demand.txt"); 

 

 for (i=0; i < CENTROIDS; i++) { 

  fin >> demandCEN[i]; 

 } 

 

 ifstream fin1("gamma.txt"); 
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 for (i=0; i < NUMSTOPS; i++) { 

  for (j = 0; j < CENTROIDS; j++){ 

   fin1 >> gamma[i][j]; 

  } 

 } 

 

 for ( i = 0; i < NUMSTOPS; i++){ 

  for (j = 0; j < CENTROIDS; j++) { 

   if (gamma[i][j]<= 1980) { 

    demand[i] = demand[i] + demandCEN[j]; 

   } 

  } 

 } 

 

 cout<<"demand /"; 

   

  for (i = 0; i < NUMSTOPS; i++) { 

   cout<<demand[i]; 

    

   if (i < (NUMSTOPS - 1)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl<<endl; 

 

 ifstream fin2("lambda.txt"); 

 

 for (i=0; i < NUMSTOPS; i++) { 

  for (j = 0; j < NUMSTOPS; j++){ 

   fin2 >> lambda[i][j]; 

  } 

 } 
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 int n[NUMSTOPS] = 

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29

,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,              

54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,

80,81,82,83,84}; 

 

 double zoptimal[6] = {1000000000}; 

 int roptimal[NUMSTOPS][6] = {0}; 

 

 

 for (int OUTCOUNT = 2; OUTCOUNT < 8; OUTCOUNT++) { 

 

  int SETSIZE = OUTCOUNT; 

  int ID = (SETSIZE + 1); 

  int cont,tran1,leave,redo; 

 

  int ** r; 

        //memory allocated for elements of rows. 

        r = new int *[SETSIZE] ; 

        //memory allocated for  elements of each column. 

        for( i = 0 ; i < SETSIZE ; i++ ) 

        r[i] = new int[ID]; 

 

  int * b; 

  b = new int [SETSIZE]; 

  int * enter; 

  enter = new int [ID]; 

 

  double * zstar; 

  zstar = new double [ID]; 

  

  for (i = 0; i < ID; i++) { 

   zstar[i] = 0; 

  } 
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     //Need to include the station (marked as 1)in every set r 

 

     for (j = 0; j < ID; j++) { 

   r[0][j] = 1; 

   } 

 

 

     double BEST = 1000000000;  

      

 

     int ** bestset; 

        //memory allocated for elements of rows.  

        bestset = new int *[SETSIZE] ;  

        //memory allocated for  elements of each column. 

     for( i = 0 ; i < SETSIZE ; i++ ) 

        bestset[i] = new int[SETSIZE]; 

 

  int flag1[NUMSTOPS] = {0}; 

 

  double ratio[NUMSTOPS][NUMSTOPS] = {0}; 

  double ratio1[NUMSTOPS] = {0}; 

 

 

     int flag[NUMSTOPS*NUMSTOPS] = {0}; 

 

  //to generate an initial set r, start with the highest demand 

centroids plus the station. 

 

  if (OUTCOUNT < 3) { 

   for (i = 1; i < SETSIZE; i++) { 

    r[i][0] = n[maxIndex(demand, NUMSTOPS, flag1)]; 

    int tran = maxIndex(demand, NUMSTOPS, flag1); 

    flag[tran] = 1; 

   } 

  } 
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  cout<<"bestset OUTCOUNT -1 /"; 

   

  for (v = 0; v < SETSIZE-1; v++) { 

   cout<<carry[v][OUTCOUNT-1]; 

    

   if (v < (SETSIZE - 2)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl<<endl; 

 

  if (OUTCOUNT > 2) { 

    

   for (i = 1; i < SETSIZE - 1; i++) { 

    r[i][0] = carry[i][OUTCOUNT - 1]; 

   } 

 

   do{ 

    tran1 = rand()%(NUMSTOPS - 1) + 2; 

       cont =0; 

     

    for (i = 0; i < SETSIZE - 1; i++){ 

     if (r[i][0] == tran1) { 

      cont++; 

     } 

    } 

     

   }while (cont > 0); 

 

   r[SETSIZE - 1][0] = tran1; 

  } 

    

 

 

   //to sort set r  
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 for (j = 0; j < ID; j++) { 

 

  for (i = 0; i < SETSIZE; i++) { 

   b[i] = r[i][j]; 

  } 

   

  qsort(b, SETSIZE, sizeof(int), compare); 

 

  for (i = 0; i < SETSIZE; i++) { 

   r[i][j] = b[i]; 

  } 

 } 

 

 //Output the set r to the gams input file, combinations.inc 

 

 ofstream file("combinations.inc", ios::out | ios::trunc); 

 

 file<<"set r(i) /"; 

 

 for (i = 0; i < SETSIZE; i++) { 

  file<<r[i][0]; 

   

  if (i < (SETSIZE - 1)) { 

  file<<", "; 

  } 

 

 } 

 

 file<<"/;"<<endl; 

 

 system("/usr/local/gams/23.5.2/gams TabuGams lo=2"); 

 

 ifstream opt("optimal.txt"); 

 

 opt>>zstar[0]; 
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 cout<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][0]; 

      

   if (i < (SETSIZE - 1)) { 

    cout<<", "; 

   } 

  } 

     

 cout<<"/;"<<endl; 

 

 cout<<zstar[0]<<endl; 

 

 while (zstar[0] < 1) { 

 

  cout<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][0]; 

      

   if (i < (SETSIZE - 1)) { 

   cout<<", "; 

   } 

 

  } 

 

  cout<<"/;"<<endl; 

 

  cout<<"Infeasible!"<<endl; 

 

  leave = rand()%(SETSIZE - 1) + 1; 

 

 // a small do-loop to check that the entering node is not already in the 

set r 
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  do{ 

   redo = 0; 

   enter[0] = rand()%(NUMSTOPS - 1) + 2; 

 

   for (i=0; i < SETSIZE; i++){ 

    if (r[i][0] == enter[0]){ 

     redo++;} 

   } 

  }while(redo > 0); 

 

  cout<<"Leaving Stop index: "<<leave<<" Entering Stop: 

"<<enter[0]<<endl; 

 

  r[leave][0] = n[enter[0]-1]; 

 

  cout<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][0]; 

     

   if (i < (SETSIZE - 1)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl; 

 

  for (j = 0; j < ID; j++) { 

 

   for (i = 0; i < SETSIZE; i++) { 

    b[i] = r[i][j]; 

   } 

 

   qsort(b, SETSIZE, sizeof(int), compare); 
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   for (i = 0; i < SETSIZE; i++) { 

     r[i][j] = b[i]; 

   } 

  } 

 

  cout<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][0]; 

      

   if (i < (SETSIZE - 1)) { 

    cout<<", "; 

   } 

  } 

     

  cout<<"/;"<<endl; 

 

  ofstream file("combinations.inc", ios::out | ios::trunc); 

 

  file<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   file<<r[i][0]; 

    

   if (i < (SETSIZE - 1)) { 

   file<<", "; 

   } 

 

  } 

  file<<"/;"<<endl; 

 

  system("/usr/local/gams/23.5.2/gams TabuGams lo=2"); 

 

  ifstream opt("optimal.txt"); 

 

  opt>>zstar[0]; 
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  cout<<zstar[0]<<endl; 

 

  BEST = zstar[0]; 

  zoptimal[OUTCOUNT-2] = BEST; 

 

  //zoptimal[OUTCOUNT - 2] = BEST; 

 

  for (int q = 0; q < SETSIZE; q++) { 

   bestset[q][OUTCOUNT-1] = r[q][0]; 

   carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1]; 

   roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1]; 

  } 

 

 } 

 

 

/*An initial feasible solution in r[][0] has been constructed.  This will 

serve as the starting point for the tabu search algorithm.  From this point 

onward the focus of the algorithm is to smartly search over the neighborhood 

and update the best current solution.*/ 

 

/*Declare and initialize the tabu parameters.*/ 

 

 

 cout<<"--------Begin Tabu--------"<<endl; 

 

 int zcount = 0; 

 

 int iter = 0; 

 

 if (OUTCOUNT < 3) { 

 

  while (iter < 10) { 

 

 iter++; 
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//Set the current set for all neighborhoods to the best from the previous 

iteration 

 

  for (i = 0; i < SETSIZE; i++){ 

 

  for (j = 1; j < ID; j++) { 

   r[i][j] = r[i][0]; 

  } 

 } 

 

 

  int added[NUMSTOPS] = {0}; 

  int removed[NUMSTOPS] = {0}; 

  int infeasible[NUMSTOPS] = {0}; 

 

  int temp4; 

 

//Select a leaving node 

 

check2 = 0; 

 

 do { 

 

  check = 0; 

 

  leave = rand()%(SETSIZE - 1) + 2; 

 

  int temp2 = r[leave - 1][0]; 

 

  if (added[temp2-1] < 1) { 

 

   removed[temp2-1] = SETSIZE; 

 

   check++; 

  } 
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  else if (added[temp2 - 1] >= 1) { 

   check2++; 

  } 

  if(check2 > (SETSIZE -1)) { 

   leave = rand()%(SETSIZE - 1) + 2; 

   check++; 

   check2 = 0; 

  } 

 }while (check < 1); 

 

 cout<<"Original set r(i) /"; 

 

 for (i = 0; i < SETSIZE; i++) { 

  cout<<r[i][0]; 

      

  if (i < (SETSIZE - 1)) { 

  cout<<", "; 

  } 

 

 } 

  

 cout<<"/;"<<endl; 

 

 

  int flag3[NUMSTOPS] = {0}; 

 

 

//Select the four neighborhood solutions 

 

  for (j = 1; j < ID; j++) { 

  

 //a small do-loop to check that the entering node is not already in the 

set r 

 

  int totdist = 0; 
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  for (i = 1; i < NUMSTOPS; i++) { 

   for (int v = 1; v < SETSIZE; v++) {   

    totdist = totdist + lambda[i][r[v][0]-1]; 

   } 

 

   ratio1[i] = demand[i]/totdist; 

   totdist = 0; 

  } 

   

  cout<<"ratio1 ["; 

  for (i=0; i<NUMSTOPS; i++) { 

   cout<<" "<<ratio1[i]; 

  } 

 

  cout<<"]"<<endl; 

 

 

  do{ 

    

   redo = 0; 

    

   int remainder = iter % 2; 

 

   if (remainder > 0) { 

 

    enter[j] = n[maxIndex(ratio1, NUMSTOPS, flag3)]; 

      

    int temp7 = maxIndex(ratio1, NUMSTOPS, flag3); 

      

    flag3[temp7] = 1; 

 

    temp4 = enter[j]; 

 

   } 
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   else if (remainder == 0) { 

    enter[j] = rand()%(NUMSTOPS - 1) + 2; 

    temp4 = enter[j]; 

   } 

 

   for (t = 1; t < ID; t++) { 

                 

    for (i=0; i < SETSIZE; i++){ 

     if (r[i][t] == temp4 || added[temp4-1] > 0 || 

removed[temp4-1] > 0 || infeasible[temp4-1] > 0) { 

     redo++; 

     } 

    } 

   } 

  }while(redo > 0); 

 

  cout<<"Leaving Stop Index: "<<leave<<" Entering Stop: 

"<<enter[j]<<endl; 

 

  r[leave-1][j] = enter[j]; 

 

//to ensure that neighborhoods are distince from each other 

 

  cout<<"Neighborhood "<<j<<" set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][j]; 

     

   if (i < (SETSIZE - 1)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl; 

 

 } 
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 for (j = 1; j < ID; j++) { 

 

  for (i = 0; i < SETSIZE; i++) { 

   b[i] = r[i][j]; 

  } 

 

  qsort(b, SETSIZE, sizeof(int), compare); 

 

  for (i = 0; i < SETSIZE; i++) { 

    r[i][j] = b[i]; 

  } 

 

  cout<<"Neighborhood "<<j<<" Sorted set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][j]; 

      

   if (i < (SETSIZE - 1)) { 

    cout<<", "; 

   } 

  } 

  

  cout<<"/;"<<endl; 

 

 } 

 

 

 

 for (j = 1; j < ID; j++) { 

 

  ofstream file("combinations.inc", ios::out | ios::trunc); 

 

  file<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   file<<r[i][j]; 
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   if (i < (SETSIZE - 1)) { 

   file<<", "; 

   } 

 

  } 

 

  file<<"/;"<<endl; 

 

  system("/usr/local/gams/23.5.2/gams TabuGams lo=2"); 

 

  ifstream opt("optimal.txt"); 

 

  opt>>zstar[j]; 

 

  cout<<"Neighborhood "<<j<<" Iteration "<<iter<<" Optimal Solution: 

"<<zstar[j]<<endl; 

 

  if (zstar[j] < 1) { 

 

   infeasible[enter[j] - 1] = 2; 

 

   zcount++; 

 

   cout<<zcount<<endl; 

  } 

 

  if (zstar[j] > 0 && zstar[j] < BEST) { 

 

   BEST = zstar[j]; 

   zoptimal[OUTCOUNT-2] = BEST; 

   

   for (int q = 0; q < SETSIZE; q++) { 

 

    bestset[q][OUTCOUNT-1] = r[q][j]; 

    carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1]; 
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    roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1]; 

   } 

  } 

 

  if ((zstar[j] > 0) && (zstar[j] < zstar[0])) { 

 

    zstar[0] = zstar[j]; 

 

    added[enter[j] - 1] = SETSIZE; 

 

    zcount = 0; 

 

    cout<<zcount<<endl; 

 

    for (int p = 1; p < SETSIZE; p++) { 

                    r[p][0] = r[p][j]; 

      

    } 

 

    cout<<"do I get here?"<<endl; 

  } 

 

  else if ((zstar[j] > 0) && (zstar[j] > zstar[0])) { 

 

    zcount++; 

    cout<<zcount<<endl; 

    cout<<"do I get here?"<<endl; 

 

   if (zcount > (SETSIZE+SETSIZE) ) { 

     

    int temp5 = rand()%(ID-1) + 1; 

 

    for (int o = 1; o < SETSIZE; o++) { 

                      r[o][0] = r[o][temp5]; 

      

    } 
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    zcount = 0; 

   } 

  } 

  

 } 

   

  cout<<"Added[]: ["; 

 

        for (t = 0; t < NUMSTOPS; t++ ) { 

   cout<<" "<<added[t]; 

  } 

 

  cout<<"]"<<endl; 

 

  cout<<"Removed[]: ["; 

 

        for (t = 0; t < NUMSTOPS; t++ ) { 

   cout<<" "<<removed[t]; 

  } 

 

  cout<<"]"<<endl; 

 

  cout<<"Infeasible[]: ["; 

 

        for (t = 0; t < NUMSTOPS; t++ ) { 

   cout<<" "<<infeasible[t]; 

  } 

 

  cout<<"]"<<endl<<endl; 

 

 

  for (t = 0; t < NUMSTOPS; t++ ) { 

 

   if ( added[t] > 0 ){ 

    added[t] = added[t] - 1; 
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   } 

 

   if ( removed[t] > 0 ){ 

    removed[t] = removed[t] - 1; 

   } 

       

   if ( infeasible[t] > 0 ){ 

    infeasible[t] = infeasible[t] - 1; 

   } 

  } 

 

  } 

 } 

 

 if (OUTCOUNT > 2) { 

  

 while (iter < 10) { 

 

  iter++; 

 

  //Set the current set for all neighborhoods to the best from the 

previous iteration 

 

  for (i = 0; i < SETSIZE; i++){ 

   for (j = 1; j < ID; j++) { 

    r[i][j] = r[i][0]; 

   } 

  } 

 

  cout<<"Original set r(i) /"; 

 

     for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][0]; 

    

   if (i < (SETSIZE - 1)) { 

    cout<<", "; 
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   } 

  } 

 

  cout<<"/;"<<endl; 

   

  //Select an exchanging pair, that is a leaving node and an 

entering node 

 

     int totdist = 0; 

 

  int * leaverow; 

  leaverow = new int [ID]; 

 

  int * entercol; 

  entercol = new int [ID]; 

 

     int temp, temp1, temp2, temp3; 

 

     int tabu[NUMSTOPS][NUMSTOPS] = {0}; 

 

  for (i=0; i<SETSIZE; i++) { 

 

   for (j=1; j<NUMSTOPS; j++){ 

 

    if (j == r[i][0] - 1){ 

 

     for (o = 1; o < NUMSTOPS; o++) { 

 

      for  (v = 1; v < SETSIZE; v++) { 

       if ( j != r[v][0] - 1) { 

        totdist = totdist + 

lambda[o][r[v][0]-1]; 

       } 

      } 

       

      ratio[j][o] = demand[o]/totdist; 
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         totdist = 0; 

     } 

    } 

   } 

  } 

  

   cout<<"ratio {{"; 

 

   for ( i = 0; i < NUMSTOPS; i++) { 

 

  for (j = 0; j < NUMSTOPS; j++) { 

   

   cout<<ratio[i][j]; 

 

      if (j < (NUMSTOPS - 1)){ 

    cout<<","; 

   } 

  } 

   

  if (i < (NUMSTOPS - 1)) { 

 

   cout<<"},"<<endl<<endl; 

   cout<<"{"; 

  } 

   } 

    

   cout<<"}};"<<endl; 

 

   double tempratio[NUMSTOPS*NUMSTOPS] = {0}; 

     

   for (i = 0; i < NUMSTOPS; i++) { 

 

   for (o = 0; o < NUMSTOPS; o++ ) { 

 

   tempratio[i*NUMSTOPS + o] = ratio[i][o]; 

  } 
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  } 

 

  cout<< "tempratio/"; 

 

  for (int o = 0; o < NUMSTOPS*NUMSTOPS; o++) { 

   cout<< tempratio[o]; 

   if ( o < (NUMSTOPS*NUMSTOPS -1)) { 

   cout<<","; 

   } 

 } 

 cout<<"/;"<<endl; 

 

   

              int flag[NUMSTOPS*NUMSTOPS] = {0}; 

 

  //Select the neighborhood solutions 

 

  for (j = 1; j < ID; j++) { 

 

   do { 

    redo = 0 ; 

       int remainder = iter%2; 

 

       if (remainder > 0) { 

      

    temp = maxIndex(tempratio,NUMSTOPS*NUMSTOPS,flag); 

    double max = tempratio[temp]; 

    cout<<"temp:"<<temp<<endl; 

    cout<<"max:"<< max<<endl; 

    flag[temp] = 1; 

 

    entercol[j] = (temp+1)%NUMSTOPS; 

    leaverow[j] = ((temp+1)-entercol[j])/NUMSTOPS + 1; 

    temp1 = leaverow[j]; 

    temp2 = entercol[j]; 
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   } 

 

   if (remainder == 0) { 

 

    temp3 = rand()%(SETSIZE - 1) + 2; 

    leaverow[j] = r[temp3 - 1][0]; 

    entercol[j] = rand()%(NUMSTOPS - 1) + 2; 

    temp1 = leaverow[j]; 

    temp2 = entercol[j]; 

 

   } 

                

 

    for (i = 0; i < NUMSTOPS; i++){ 

 

     for (v = 0; v < NUMSTOPS; v++){ 

 

      if (tabu[temp1-1][temp2-1] > 1) { 

 

       redo++; 

 

      } 

 

     } 

 

    } 

 

    for ( i = 0; i < SETSIZE; i++) { 

      

     if (r[i][0] == temp2) { 

      redo++; 

     } 

    } 

  }while(redo > 0 ); 
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  cout<<"leaving stop:"<< leaverow[j]<< "  Entering 

Stop:"<<entercol[j]<<endl; 

 

  for ( i = 0; i < SETSIZE; i++) { 

   if ( r[i][j] == leaverow[j] ) { 

    r[i][j] = entercol[j]; 

   } 

  } 

 

 

  //to ensure that neighborhoods are distince from each other 

 

  cout<<"Neighborhood "<<j<<" set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][j]; 

     

   if (i < (SETSIZE - 1)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl; 

 

 } 

 

 for (j = 1; j < ID; j++) { 

 

  for (i = 0; i < SETSIZE; i++) { 

   b[i] = r[i][j]; 

  } 

 

  qsort(b, SETSIZE, sizeof(int), compare); 

 

  for (i = 0; i < SETSIZE; i++) { 

    r[i][j] = b[i]; 
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  } 

 

  cout<<"Neighborhood "<<j<<" Sorted set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 

   cout<<r[i][j]; 

      

   if (i < (SETSIZE - 1)) { 

    cout<<", "; 

   } 

  } 

  

  cout<<"/;"<<endl; 

 

 } 

 

 for ( i = 0; i < NUMSTOPS; i++) { 

 

  for (j = 0; j< NUMSTOPS; j++) { 

 

   if (tabu[i][j] > 0) { 

    tabu[i][j] = tabu[i][j] - 1; 

   } 

  } 

 } 

 

  

 

 

 for (j = 1; j < ID; j++) { 

 

  ofstream file("combinations.inc", ios::out | ios::trunc); 

 

  file<<"set r(i) /"; 

 

  for (i = 0; i < SETSIZE; i++) { 
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   file<<r[i][j]; 

    

   if (i < (SETSIZE - 1)) { 

   file<<", "; 

   } 

 

  } 

 

  file<<"/;"<<endl; 

 

  system("/usr/local/gams/23.5.2/gams TabuGams lo=2"); 

 

  ifstream opt("optimal.txt"); 

 

  opt>>zstar[j]; 

 

  cout<<"Neighborhood "<<j<<" Iteration "<<iter<<" Optimal Solution: 

"<<zstar[j]<<endl; 

 

  if (zstar[j] < 1) { 

 

   tabu[leaverow[j]-1][entercol[j] - 1] = 2; 

 

   zcount++; 

 

   cout<<zcount<<endl; 

  } 

 

  if (zstar[j] > 0 && zstar[j] < BEST) { 

 

   BEST = zstar[j]; 

   zoptimal[OUTCOUNT-2] = BEST; 

   

   for (int q = 0; q < SETSIZE; q++) { 

 

    bestset[q][OUTCOUNT-1] = r[q][j]; 
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    carry[q][OUTCOUNT] = bestset[q][OUTCOUNT-1]; 

    roptimal[q][OUTCOUNT-2] = bestset[q][OUTCOUNT-1]; 

   } 

  } 

 

  if ((zstar[j] > 0) && (zstar[j] < zstar[0])) { 

 

    zstar[0] = zstar[j]; 

 

    tabu[entercol[j]-1][leaverow[j] - 1] = SETSIZE + 1; 

 

    zcount = 0; 

 

    cout<<zcount<<endl; 

 

    for (int p = 1; p < SETSIZE; p++) { 

                    r[p][0] = r[p][j]; 

      

    } 

 

    cout<<"do I get here?"<<endl; 

  } 

 

  else if ((zstar[j] > 0) && (zstar[j] > zstar[0])) { 

 

    zcount++; 

    cout<<zcount<<endl; 

    cout<<"do I get here?"<<endl; 

 

   if (zcount > (SETSIZE+SETSIZE) ) { 

     

    int temp5 = rand()%(ID-1) + 1; 

 

    for (int o = 1; o < SETSIZE; o++) { 

                      r[o][0] = r[o][temp5]; 
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    } 

    tabu[entercol[temp5]-1][leaverow[temp5] - 1] = SETSIZE 

- 1; 

    zcount = 0; 

   } 

  } 

  

 } 

  cout<<"tabu {{"; 

 

     for ( i = 0; i < NUMSTOPS; i++) { 

    

   for (j = 0; j < NUMSTOPS; j++) { 

 

    cout<<tabu[i][j]; 

 

       if (j < (NUMSTOPS - 1)){ 

     cout<<","; 

    } 

   } 

     

      if (i < (NUMSTOPS - 1)) { 

    cout<<"},"<<endl<<endl; 

       cout<<"{"; 

   } 

  } 

  

     cout<<"}};"<<endl; 

 

 } 

 } 

 

 cout<<"Best Solution: "<<BEST<<endl; 

 cout<<"Best Solution Stop Set: "; 

 

 cout<<"r(i) /"; 
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  for (int v = 0; v < SETSIZE; v++) { 

   cout<<bestset[v][OUTCOUNT-1]; 

    

   if (v < (SETSIZE - 1)) { 

   cout<<", "; 

   } 

  } 

 

  cout<<"/;"<<endl<<endl; 

 

  cout<<OUTCOUNT<<"YUYAO"<<endl; 

 

  cout<<zoptimal[OUTCOUNT-2]<<endl; 

 

    

} 

     

    cout<<"YUYAO"; 

    cout<<"zoptimal(6) /"; 

    for (v = 0; v < 6; v++) { 

  cout<<zoptimal[v]; 

 

  if (v < 5) { 

   cout<<","; 

  } 

 } 

 cout<<"/;"<<endl<<endl; 

 

     

 int mark = 0; 

 int mark1[6] = {0}; 

 

    mark = minIndex(zoptimal, 6, mark1); 

 

 cout<<mark<<endl<<endl; 



 85 

 cout<<"Final Best Solution:"<<zoptimal[mark]<<endl; 

 cout<<"Final Best Solution Stop Set:"; 

 

  cout<<" /"; 

 

  for (v = 0; v < NUMSTOPS; v++) { 

   cout<<roptimal[v][mark]; 

    

   if (v < (NUMSTOPS - 1)) { 

   cout<<", "; 

   } 

  } 

 

 cout<<"/;"<<endl<<endl; 

 

 int mark2=0; 

 

 for(i = 0; i < NUMSTOPS; i++) { 

  if(roptimal[i][mark] > 0) {mark2++;} 

 } 

 

 int * routput; 

 routput = new int [mark2]; 

 

 for(i = 0; i < mark2; i++) { 

  routput[i] = roptimal[i][mark]; 

 } 

 

 ofstream file("combinations.inc", ios::out | ios::trunc); 

 

 file<<"set r(i) /"; 

 

 for (i = 0; i < mark2; i++) { 

  file<<routput[i]; 

   

  if (i < (mark2 - 1)) { 
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  file<<", "; 

  } 

 

 } 

 

 file<<"/;"<<endl; 

 

 system("/usr/local/gams/23.5.2/gams xfix lo=2"); 

 system("/usr/local/gams/23.5.2/gams evaluation lo=2"); 

 

 

 t2 = time (NULL); 

 double diff = t2 - t1; 

 cout<<"Computation Time: "<<diff<<endl; 

 

 return(0); 

 

} 

 

 

 

//============================================= maxIndex 

// From algorithms/arrayfuncs.cpp 

// Returns the index of the maximum value in an array. 

int maxIndex(double a[], int size, int check[]) { 

 

    int maxIndex = 0; 

    for (z=1; z<size; z++) { 

        if (a[z] > a[maxIndex] && check[z] < 1) { 

            maxIndex = z; 

        } 

 } 

    return maxIndex; 

}//end maxIndex 

 

//============================================= minIndex 
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// From algorithms/arrayfuncs.cpp 

// Returns the index of the minimum value in an array. 

int minIndex(double a[], int size, int check[]) { 

 

    int minIndex = 0; 

    for (z=1; z<size; z++) { 

        if (a[z] < a[minIndex] && check[z] < 1) { 

            minIndex = z; 

        } 

 } 

    return minIndex; 

}//end minIndex 
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